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Motivation introduction

In many settings, agents communicate by disclosing selected evidence:

− Journalists select which facts to report in their articles

− Managers select which results to discuss in performance reports

− Job candidates select which achievements to list on their CVs

These are examples of selective disclosure:

− A sender can disclose K pieces of verifiable evidence, which she selects from
a privately observed pool of N pieces

A pervasive force in communication, e.g., a principal source of news media bias
(“filtering,” Gentzkow et al. ’14)
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This Paper introduction

An experimental study on selective disclosure

We build on a small theoretical literature on selective disclosure of noisy evidence
Milgrom (’81, Bell), Fishman and Hagerty (’90, QJE), Di Tillio et al (’21, Ecma)

Our model generates rich comparative statics in N and K for outcomes such as:

− Which evidence do senders disclose?

− How much information do they transmit to receivers?

− Do receivers account the selection in the evidence they see?

These comparative statics inform a novel experimental design and provide a
rigorous test of the theory



Preview of Results introduction

Our data corroborates the key qualitative predictions of the theory

− Validation of selective disclosure as a force in communication that is
behaviorally descriptive

We document two novel quantitative deviations from the theory:

− A form of deception aversion in senders leads to overcommunication

− Evidence of selection neglect in a strategic setting

Policy implications: Mandating disclosure can be ineffective (and possibly
detrimental) when selection opportunities are large



Related Literature: Theory introduction

Classic disclosure models focus on rich evidence (e.g., Grossman, ’81; Milgrom, ’81;
Jovanovic, ’82; Okuno-Fujiwara et al., ’90)

− Senders can verifiably disclose their type ⇝ unravelling results

We focus on settings where evidence is not rich and, thus, unravelling does not
occur Fishman and Hagerty (’90, QJE), Di Tillio et al (’21, Ecma)

− This enables nontrivial comparative statistics, which are instrumental for
testing the theory

Related but less connected settings: Glazer and Rubinstein (’04, Ecma; ’06, TE),
Shin (’03, Ecma), Dziuda (’11, JET),

Haghtalab et al. (’21), Gao (’23)
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Related Literature: Empirics introduction

Disclosure settings with verifiable and “rich” evidence Forsythe et al (’89, RAND),
Jin and Leslie (’03, QJE), Jin, Luca and Martin (’22, AEJ: Micro)

Settings with unverifiable evidence, i.e., cheap talk Cai and Wang (’06, GEB)

Recent and related settings with selective disclosure Degan, Li, Xie (’23, CJE),
Penczynski, Koch, Zhang (’23)

Methodologically: (close to Frechette, Lizzeri and Perego (2022, Ecma))

− Exploit comparative statics to test underlying forces in the theory



Outline introduction

1. Model

2. Equilibrium and Testable Predictions

3. Experimental Design

4. Results
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Model model

from Milgrom (1981)

Sender privately observes the state θ ∈ Θ:

− Θ finite and ordered, p ∈ ∆(Θ) common prior

Given θ, Sender draws N i.i.d. signals

− Exogenous info structure f : Θ → ∆(S), S finite and ordered, MLRP

− f(·|θ) has full support for every θ

Sender can disclose up to K of the N available signals ⇝ message

Receiver observes the message and takes an action a ∈ A
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Payoffs model

Given state θ and action a,

− Receiver’s payoff is u(θ, a) = −(a− θ)2 wants to guess the state

− Sender’s payoff is v(θ, a) = a higher actions preferred



Discussion model

No message can verifiably reveal θ ⇝ failure of richness (Okuno-Fujiwara et al., ’90)

Sender does not choose N , i.e., available evidence is exogenous

If K = N , the sender can disclose all her available evidence if so she wants

If K < N , sender can cherry pick which evidence to disclose

− K < N captures exogenous communication constraints

Changes in K and N generate rich testable predictions, which we use as a test of
the theory



equilibrium



Equilibrium

Unlike typical disclosure games with “rich” evidence structure, our game admits
multiple PBEs outcomes

Focus on sender’s strategies that are pure and weakly increasing in θ

We refine the equilibrium set using neologism proofness, Farrel (’93, GEB)
adapted to our setting with verifiable information appendix

Under this refinement, our game admits a unique equilibrium outcome
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Equilibrium predictions

More formally, consider the following class of sender’s strategies:

Definition

A sender’s strategy is maximally selective if, given the available signals, she
discloses the K-highest ones.

Proposition 1

There exists a PBE in which the sender plays a maximally selective strategy
(Milgrom 1981)

Moreover, the outcome it induces is unique in the class of neologism-proof PBEs
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Informativeness predictions

Main outcome of interest is the informativeness the equilibrium strategies

− I.e., how effectively sender and receiver communicate

We measure informativeness as the correlation btw θ and a, denoted by
I = Corr(θ, a) as in Lizzeri, Frechette, Perego (’22, Ecma)
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Main Comparative Statics predictions

Rich predictions regarding how informativeness changes in K and N

Proposition 2

Fixing N , Equilibrium informativeness increases in K

Fixing K, equilibrium informativeness can increase for small N but eventually
decreases to zero as N → ∞

If K = N , equilibrium informativeness increases in N

That is, giving the sender more discretion can make the receiver better off
see also Fishman and Hagerty (’90, QJE),

Di Tillio, Ottaviani and Sorensen (’21, Ecma)



Main Comparative Statics predictions

Rich predictions regarding how informativeness changes in K and N

Proposition 2

Fixing N , Equilibrium informativeness increases in K

Fixing K, equilibrium informativeness can increase for small N but eventually
decreases to zero as N → ∞

If K = N , equilibrium informativeness increases in N

That is, giving the sender more discretion can make the receiver better off

see also Fishman and Hagerty (’90, QJE),
Di Tillio, Ottaviani and Sorensen (’21, Ecma)



Main Comparative Statics predictions

Rich predictions regarding how informativeness changes in K and N

Proposition 2

Fixing N , Equilibrium informativeness increases in K

Fixing K, equilibrium informativeness can increase for small N but eventually
decreases to zero as N → ∞

If K = N , equilibrium informativeness increases in N

That is, giving the sender more discretion can make the receiver better off
see also Fishman and Hagerty (’90, QJE),

Di Tillio, Ottaviani and Sorensen (’21, Ecma)



Example: Conclusive Good News predictions

Suppose Θ = {θL, θH}, p(θH) = 1
2 , S = {A,B}, K = 1

f(s|θ) Signal

State A B

θL 0 1

θH γ 1− γ

I(K,N) = 1
4 − (1−γ)N

2(1+(1−γ)N )

N

I(K,N)I(K,N)
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Example: Inconclusive News comp stats

Suppose Θ = {θL, θH}, p(θH) = 1
2 , S = {A,B}, K = 1

If η ∈ (0, 1
2 ) and γ ∈ ( 12 , 1):

f(s|θ) Signal

State A B

θL η 1− η

θH γ 1− γ

I(K,N) = more complex

N

I(K,N)I(K,N)
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Experimental Design lab implementation

Binary state: θL and θH , equal probability

Four possible signals S = {A,B,C,D}

Information structure f :

Signal

State A B C D

θL 10% 20% 25% 45%

θH 45% 25% 20% 10%

Receiver’s action a ∈ [0, 1], which makes it equivalent to a belief elicitation task
implemented using BSR (Hossain and Okui, ’13 Restud) Details



Treatments lab implementation

We vary K and N as follows:

N = 1 N = 3 N = 10 N = 50

K = 1 ✓ · ✓ ✓
K = 3 · ✓ ✓ ✓



Main Comparative Statics

0 N

I(K,N)
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Experimental Details lab implementation

− Undergrad population Columbia and NYU: Spring, Summer, Fall 2023

− 420 subjects, between-subject design

− 6 treatments

− 4 sessions per treatment

− 30 rounds per session, random rematching

− 17.5 subjects per sessions on average

− Average payout $30 per subject

− Fixed roles



User Interface: N = 10 and K = 3 lab implementation



User Interface: N = 10 and K = 3 lab implementation



User Interface: N = 10 and K = 3 lab implementation



results



Outline results: senders

Progression of our analysis:

− Which evidence do senders disclose?

− How informative is it?

− How do receivers respond to it?



result 1
(which evidence is disclosed)



Which Evidence is Disclosed? senders: result 1

Question 1: Which evidence do senders disclose?

Theory predicts that:

− If N increases, the evidence disclosed should become more favorable
sender can be more selective with larger sample

− If K increases, evidence disclosed should become less favorable
held to higher a standard, sender needs to be less selective

To test this, we compute the GPA of each message (A⇝ 4, B ⇝ 3, etc) and
study how it changes in N and K
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Which Evidence is Disclosed? senders: result 1

Robustness:

− Theoretical predictions Appendix

− Average treatment effects, statistical tests Appendix

− Raw data Appendix



Summary of Result 1 senders: result 1

Result 1. Senders selectively disclose the available evidence in ways that are
consistent with the key qualitative predictions of the theory

Note that:

− FOSD rankings are a demanding test for the theory

− Contrasting signs reduce scope for alternative explanations



result 2
(informativeness)



How Much Information is Transmitted? senders: result 2

Result 1 documents that senders engage in selective disclosure:

Question 2: What are the consequences of this selection on how much
information is transmitted?

Theory offers rich and contrasting predictions on how informativeness should
change in N and K

We measure informativeness as the correlation between the state θ and the
guess a induced by the sender’ strategy Appendix
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Summary of Result 2 senders: result 2

Array of contrasting predictions sets high bar for the theory

Result 2. Informativeness changes in ways that is consistent with the key
qualitative predictions of the theory

Overall, as a force in communication, selective disclosure seems behaviorally
descriptive

Yet, our results also reveal substantial quantitative deviations

− Senders transmit (weakly) more information than predicted. That is, they
overcommunicate
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Explaining Overcommunication senders: result 3

This finding is at odds with existing experimental literature on disclosure
e.g., Forsythe, Isaac and Palfrey (’89, Rand), Jin and Leslie (’03, QJE),

Jin, Luca, and Martin (’22, AEJ: Micro), Lizzeri, Frechette, Perego (’22, Ecma)

− These papers consistently find that senders undercommunicate

− Failure of the “unraveling principle” ⇝ Senders fail to disclose evidence
when it is sufficiently unfavorable

− They offer empirical support to policies that mandate disclosure in the
marketplace

Question 3. Then why do we observe overcommunication?
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Explaining Overcommunication senders: result 3

In our setting, full unraveling is not an equilibrium: Why?

− Informativeness is always predicted to be interior I ∈ (0, 1)

− In contrast, literature largely focused on an extreme prediction: I = 1

This is a novel and essential feature of our approach:

− It enables nontrivial comparative statistics, which are instrumental for testing
the theory

− It allows theoretical predictions to fail from both directions: over and under
communication)

Our findings suggest that undercommunication may not be a robust behavioral
feature in disclosure games
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Explaining Overcommunication senders: result 3

More concretely, how does overcommunication come about?

Conditional on evidence available, sender’s behavior should not depend on θ

− Equilibrium strategy: disclose K-best signals, regardless of θ

In contrast, we find that some senders adopt state-dependent strategies

To illustrate, we estimate an OLS regression model: details

Prob(s is disclosed) = α+ βs · θ + γ ·X + ε

where X is a set of regressors that controls for senders’ available evidence
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Summary of Result 3 senders: result 3

We find consistent patterns across all treatments:

− When the state is low (relative to when is high), senders under-disclose good
evidence and over-disclose bad evidence Also: effects on GPA

Result 3. Senders exhibit a form of deception aversion

State-dependent behavior generates overcommunication

Discussion:

− Senders can’t lie in our setting, yet some avoid being deceptive Sobel, ’23, JPE

− Never a best response to observed receivers behavior appendix
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Do Receivers Account for Selection? results: receivers

The previous results have established that (modulo overcommunication) the
evidence receivers see is endogenously selected

Question 4. To what extent do receivers account this selection in their
responses?

To test this, we exploit the following prediction of the theory:

− Given any message, as N increases, receivers’ beliefs about the state being
high should decrease

We report the percentage change in receiver’ beliefs averaged out across all
messages and receivers
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Summary of Result 4 results: receivers

Result 4. On average, receivers are increasingly skeptical of the evidence they
see as it becomes more selected, as predicted by the theory

Yet, quantitatively, they fail to fully account for selection

First evidence of selection neglect in communication, a setting where selection
arises endogenously, as an equilibrium outcome

Recent literature has documented selection neglect in non-strategic settings,
where selection is exogenous

Esponda, Vespa (’18, QE), Enke (’20, QJE), Barron, Huck, Jehiel (2023, AEJ:Micro)

In progress: Identify receivers’ “types”
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Do Receivers Account for Selection? results: receivers

Question 5. The previous result focused on beliefs, but how costly are these
mistakes in terms of payoffs?

Define accuracy as the percentage of the payoff the receiver obtains relative to
what a Bayesian would have obtained

We normalize accuracy by the accuracy a receiver would obtain if she behaved at
random

The theory predicts accuracy is equal to 1 in all treatments
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Receivers’ Accuracy results: receivers
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Summary of Result 5 results: receivers

Result 5. Receivers become less accurate as N increases

Especially puzzling given that the receiver’ problem becomes “easier” as N

increases

In progress: Is it selection-neglect the driver of loss in payoff/accuracy?
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Conclusion

A comprehensive experimental study on selective disclosure

We exploit comparative statics to inform a novel experimental design

Our data corroborates the key qualitative predictions of the theory

− Validation of selective disclosure as a force in communication that is
behaviorally descriptive

We detect two main quantitative deviations from the theory:

− A form of deception aversion in senders leads to overcommunicate

− We find evidence of selection neglect in a strategic setting
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How Much Information is Transmitted? results: senders

Question: How informative are senders’ strategies?

We measure informativeness I(K,N) as correlation between:

− The state θ

− The receiver’s guess a

state θ

Sender
provides

information
message m

Receiver
processes

information
guess a

We refer to Corr(θ, aB) as the sender-induced correlation Back
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Richness results: senders

Theoretically, our setting differs from typical disclosure model because evidence
structure is not “rich”

Evidence structure is rich if, for all θ, sender can send message that verifiably
reveals θ

In our setting, evidence is noisy, and K and N are finite. No message can
verifiably reveal θ

Richness drives unraveling results (Okuno-Fujiwara et al., 1990, Restud)

Strong assumption in many practical settings Back



OLS Regression Model results: senders

We restrict attention to the observations in which s is available:

Prob(s is disclosed) = α+ βs · θ +
∑
s∈S

γs ·min{k, avs}+ ε

Senders’ random effects; Standard errror clustered at the session level

Regressors {min{k, avs}}s∈S controls for senders available evidence

Results robust to controlling for set of available messages Back



Some Notation: Strategies and Beliefs

Denote M the space of all messages

Sender’s Strategy pure and θ-independent

− σ : ΩN → M s.t. σ(s̄) ∈ M(s̄), for all s̄

where M(s̄) is the space of available messages given s̄

Receiver’s Beliefs and Strategy

− µ : M → ∆(SN )

− a : M → ∆(A)

Given µ, receiver’s optimal strategy given by

a(m) = E(θ|m) =
∑
s̄

µ(s̄|m)E(θ|s̄) ∀m



Sequential Equilibrium

A Sequential Equilibrium is a pair (σ∗, µ∗) s.t.

1. For all s̄ ∈ ΩN , σ∗(s̄) ∈ M(s̄) and∑
s̄′

µ∗(s̄′|σ∗(s̄))E(θ|s̄′) ≥
∑
s̄′

µ∗(s̄′|m′)E(θ|s̄′) m′ ∈ M(s̄)

2. For all m, supp µ∗(·|m) ⊆ C(m) = {s̄ ∈ SN : m ∈ M(s̄)}. In particular, if
m ∈ σ∗(SN ),

µ∗(s̄|m) = q(s̄|σ⋆−1

(m)) ∀ s̄

where q(s̄) =
∑

θ p(θ)f(s̄|θ)



Multiplicity and Neologism Proofness

Unlike classic disclosure games, the sequential equilibrium outcome is not unique
when K < N .

▶ Off-path beliefs can support other equilibrium outcome.
▶ Refinements for signalling games (e.g., Cho-Kreps ’87, Banks-Sobel ’87)

have no force here.
▶ Refinements for cheap talk games: Farrel (1993)’s Neologism Proofness.



Multiplicity and Neologism Proofness

Θ = {0, 1} and p(1) = 1
2 . N = 2 and K = 1.

Ω = {A,B}, f(A|θH) = 1 and f(A|θL) = 1
2 .
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E[θ|m = A] = 4
7 and E[θ|m = B] = E[θ|m = ∅] = 0 =⇒

No incentive to deviate
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Neologism Proofness

A neologism is a a pair (m,C), C ⊆ {s̄ ∈ SN : m ∈ M(s̄)}

Literal meaning of (m,C) ⇝ “My type s̄ belongs to C and I can prove it by
sending message m”

A neologism (m,C) is credible relative to equilibrium (σ∗, µ∗) if

1.
∑
s̄′

q(s̄′|C)E(θ|s̄′) >
∑
s̄′

µ∗(ω̄′|σ∗(s̄))E(θ|s̄′) for all s̄ ∈ C

2.
∑
s̄′

q(s̄′|C)E(θ|s̄′) ≤
∑
s̄′

µ∗(s̄′|σ∗(s̄))E(θ|s̄′) for all s̄ /∈ C

The equilibrium is Neologism Proof if no neologism is credible.



Neologism Proofness

1 (A,A)

0 (A,B)

(B,B)

θ s̄

{∅, A}

{∅, A,B}

{∅, B}

M(s̄)

∅

∅

∅

σ∗(s̄)

m = A and C = {(A,A), (A,B)} =⇒

E[θ|m = A] = 4
7 > E[θ|m = ∅] = 1

2

Since neologism (m,C) is credible, this PBE is not neologism proof equilibrium
Back



Neologism Proofness

Proposition

The equilibrium with maximal selective disclosure is Neologism Proof.

Neologism Proofness delivers outcome uniqueness

An equilibrium (σ, µ) induces an outcome x : SN → A,

x(s̄) =
∑
s̄′

µ(s̄′|σ(s̄))E(θ|s̄′) ∀ s̄.



Belief Elicitation lab implementation

Since Θ is binary and u(a, θ) = −(a− θ)2, the receiver’s task is equivalent to
eliciting her beliefs via a quadratic scoring rule (QSR)

A large literature on belief elicitation has shown that QSR can be biased when
subjects are not risk-neutral

To avoid this issue, we implement a binarized scoring rule a la Hossain and Okui
(2013), which is robust to various risk preferences

Back



Which Evidence is Disclosed? results: senders
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Alternative GPA: Empty = 0 results: senders
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Alternative GPA: Empty = 2.5 results: senders
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Alternative GPA: Empty = Avg Undisclosed results: senders
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Qualitative predictions are corroborated by the data (pvals ∼ 0.01)
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Which Evidence is Disclosed? results: senders

For K = 1 we can compare the observed message GPA with the one that would
arise from an optimal empirical behavior of the sender: ∅ better than C and D
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Quantitatively, GPA smaller than theory predicts for N > K (pvals < 0.05)



Best Reply vs Theoretical Predictions results: senders
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Quantitatively, best reply and theory are different for N < 50 (pvals < 0.01)

The behavior is the same 74% of the times for N = 1, 99% of the times for
N = 10 and 100% of the times for N = 50



Empirical Best Response vs Equilibrium appendix

Given observed receivers’ behavior, senders’ best response coincides with
equilibirum strategy

▶ 74% of the times in treatment (N = 1,K = 1)

▶ 99% of the times in treatment (N = 10,K = 1)

▶ 100% of the times in treatment (N = 50,K = 1)
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Frequency of Signals in Sender’s Message results: senders
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Which Evidence is Disclosed? High Type results: senders

1 10 50

N

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

M
es

sa
ge

 G
PA

K = 1

Data
Naive
Theory

3 10 50

N

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

M
es

sa
ge

 G
PA

K = 3

Data
Naive
Theory

Quantitatively, senders select less than theory predicts (pvals < 0.1)



Which Evidence is Disclosed? Low Type results: senders
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Quantitatively, senders select less than theory predicts (pvals < 0.05)
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Heterogeneity: Senders

Challenge
▶ Large number of urn / balls / message combinations

▶ Specific behavior of interest varies across treatments
▶ Number of balls sent (K = 1 vs K = 3)
▶ Balls sent vs balls available (N = K vs N > K)

→ Precludes a unified approach using those variables



Heterogeneity: Senders

Solution
▶ Transform balls and messages to numbers (B# and M#)

▶ Regress M# on B#|yellow urn and B#|red urn

▶ Cluster the coefficient estimates

▶ Describe behavior along key dimensions of interest
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Heterogeneity: Senders
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Heterogeneity: Senders
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Heterogeneity: Senders
0

.2
.4

.6
.8

1
C

oe
ffi

ci
en

t f
or

 Y
el

lo
w

 U
rn

0 .2 .4 .6 .8 1
Coefficient for Red Urn

4 7
3 19

N = 10 & K = 3 Cluster Obs Urn
(33) K A D

Triangle 19
Red 0.99 0.99 0

Yellow 0.88 0.96 0.01
Square 3

Red 1 0.46 0.17
Yellow 1 0.43 0.04

Circle 7
Red 1 0.94 0

Yellow 0.74 0.66 0.10
Diamond 4

Red 0.92 0.83 0
Yellow 0.76 0.28 0.43



Heterogeneity: Senders
0

.2
.4

.6
.8

1
C

oe
ffi

ci
en

t f
or

 Y
el

lo
w

 U
rn

0 .2 .4 .6 .8 1
Coefficient for Red Urn

6 9
5 15

N = 50 & K = 3 Cluster Obs Urn
(35) K A D

Triangle 15
Red 1 0.88 0

Yellow 0.94 0.80 0
Square 5

Red 0.89 0.17 0
Yellow 0.87 0.32 0

Circle 9
Red 0.97 0.70 0

Yellow 0.94 0.31 0.04
Diamond 6

Red 1 0.86 0.03
Yellow 0.95 0.31 0.41



Heterogeneity: Senders

Equilibrium type (56%)

▶ Most common
▶ N > K: Mostly report best balls independently of the state
▶ N = K: Disclose fewer than K balls

Deception Averse Type (17%)

▶ A’s reported more often when the state is high
▶ D’s reported more often when the state is low
▶ N = K: Disclose fewer than K balls

Others (27%)

▶ Similar to equilibrium types when the state is high
▶ Report A’s less but do not report D’s when the state is low
▶ Some low rates of A’s when the state is high [confusion]



Heterogeneity: Receivers

Challenge

▶ Large number of messages

▶ Different messages across treatments

▶ Some messages have very few observations

→ Precludes a unified approach using that variable



Heterogeneity: Receivers

Solution

▶ Compute equilibrium update following each message

▶ Compute the update of someone who ignores selection: naive update

▶ Regress guesses on a constant (α) and the equilibrium and naive updates

▶ Cluster the coefficient estimates

▶ Describe behavior along key dimensions of interest



Heterogeneity: Receivers
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Heterogeneity: Receivers
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Heterogeneity: Receivers
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Heterogeneity: Receivers

▶ Variation in updating strategies
▶ Extent they account for selection

▶ Being closer to equilibrium ̸→ higher payoffs

▶ However, in many treatments, groups better at accounting for selection are
among the highest

▶ With N = 50, few differences in payoffs



Summary

Senders

▶ The majority:
▶ Select the better balls to send.
▶ Behave similarly for both urns.

▶ Some convey more information by conditioning on the type.

→ More information transmitted than predicted.

Receivers

▶ Many do not fully account for selection.
▶ Some are not very responsive.

→ Less information received than predicted.


