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Abstract

The problem of optimally designing information for multiple agents who in-

teract in a game can be formulated as a linear program. We explore its dual

representation and show that it provides a novel perspective and new economic

insights into the information-design problem. Through the lens of the dual, we

identify general properties that hold for all information-design problems. Duality

also offers a portable, general, method for computing solutions. We illustrate this

approach in the context of simple investment games.
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1 Introduction

Information design studies how to provide information to a group of players so as to

affect the outcome of their strategic interaction in some desired way. This agenda stems

from the idea that, in many situations, information provision may be the most natural

available tool a third party can use to influence behavior. This framework has been

applied to several areas, including the design of rating systems, stress tests, and political

campaigns.

The design of information gives rise to specific constraints and challenges relative

to, for instance, the design of monetary incentives. To address them, different solution

methods have been proposed. In this paper we focus on one, which is based on the notion

of Bayes-correlated equilibrium (Bergemann and Morris (2016)). This method allows us

to cast the information-design problem in terms of a linear program. Our contribution is

to derive and interpret the dual of this program for general settings with multiple players

and arbitrary payoff functions. This exercise is useful in three distinct ways.

First, the dual offers a novel economic interpretation of information design. Recall

that an information structure specifies the probability that each state of the world gives

rise to a signal; these probabilities determine the signal’s ultimate meaning for the player

observing it. Through the lens of the dual, designing an optimal structure can be viewed

as a problem of minimizing the marginal value of an extra ‘unit’ of probability to be

assigned to the signals. In fact, we can think of designing a signal as ‘buying’ units of

probability from each state viewed as a ‘seller,’ whose stock of probability is the prior of

that state. The solution of this dual problem requires to find (shadow) prices—one for

each state—that minimize the value of one extra unit of supply of probability.

These prices capture the key trade-offs of the information-design problem. The higher

the designer’s payoff from the behavior induced by a signal, the higher the price she has

to pay to the states selling their probability to that signal. However, the designer gets a

‘discount’ from a state-seller if a signal it generates leads some player to choose an action

he would find suboptimal ex post, that is, had he learned the state and the action of

others. A ‘penalty’ is instead added to the state-price if the induced action is strictly

optimal based on the same ex-post information. Thus, inducing a player to choose a

specific action can trigger a discount for one state and a penalty for another, or even

discounts and penalties for the same state depending on the opponents’ induced actions.

This interdependence between state-prices is what ultimately determines which behavior

the designer optimally induces in each state.

The price discounts create the basic incentive for the designer to use partially informa-
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tive signals. Indeed, a player can be induced to choose an ex-post suboptimal action only

if he is kept uncertain about the state and others’ behavior. The dual also characterizes

the optimal way of designing information to achieve this.

The second way our dual approach is useful is that it identifies general properties

of optimal information structures. For instance, an optimal use of price discounts and

penalties requires that the signals inducing a player to take ex-post suboptimal actions

should render that player ex-ante indifferent between the chosen action or the ex-post

optimal one. When this is not the case, the designer provides either too much or too

little information to that player. This property generalizes, to the realm of multi-player

games, the insight that Kamenica and Gentzkow (2011) have identified for the case of a

single receiver of information. Another optimality property implied by the dual is that

it can be optimal to induce multiple action profiles in one state only if profiles giving

the designer a higher payoff also allow her to reap more discounts on the price of that

state. Again, this is a property of the solution to Kamenica and Gentzkow (2011) leading

example, which we find to hold true more generally, even for games.

To the best of our knowledge, these properties have not been derived before for

multi-player information-design problems. This highlights the third advantage of the

dual approach. Is has been noted before that the concavification method of Kamenica

and Gentzkow (2011), though conceptually powerful, may encouter some limitations in

some applications. Linear programming has been suggested as a possible alternative

(Bergemann and Morris (2018), Kolotilin (2018)). Within this alternative, the dual

method seems particularly promising as a portable, general, way to solve information-

design problems. It delivers a well-defined recipe to first derive the prices of each state and

from them the optimal information structure. For instance, the first step can immediately

identify the action profiles that can never arise in a state in any optimal solution. More

generally, the dual method here is proposed not as a way to check the optimality of some

candidate information structure, but to find solutions directly.

To illustrate these techniques, we consider an application of our method to simple

investment games. The example is borrowed from (and compared with) Bergemann and

Morris (2018). We show that for those games the dual allows one to derive the optimal

information structures in few straightforward steps.

Literature. Information design is the focus of a large and growing literature, which has

been recently reviewed by Bergemann and Morris (2018). From the seminal contribution

of Brocas and Carrillo (2007), Rayo and Segal (2010), and Kamenica and Gentzkow

(2011), the literature has focused on different aspects of the interaction between a designer
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(or sender) who commits to an information structure in order to persuade a single player

(or receiver).1 Information design generalizes this basic interaction to contexts where the

designer persuades multiple agents who play a game. The present paper builds on a key

result by Bergemann and Morris (2016) which characterizes the players’ behaviors that

the designer can induce in terms of private recommendations that the players are willing

to obediently follow.2

Closest to our work are two papers that focus exclusively on the single-receiver case.

Dworczak and Martini (2019) offer an insightful interpretation that expresses the persua-

sion problem as a Walrasian exchange economy with one producer and one consumer of

probabilities, the latter being the information designer. This interpretation differs from

the one proposed in the present paper in several ways, even beyond the fact that it is

restricted to sender-receiver settings. For instance, prices in the persuasion economy of

Dworczak and Martini (2019) are assigned to the posterior beliefs induced by signals. By

contrast, in our interpretation prices are assigned to the states, each viewed as a seller

of probabilities.

The second paper, Kolotilin (2018), adopts a linear-programming approach for study-

ing a specific class of problems where the receiver’s utility satisfies a strong form of single-

crossing. Using duality, Kolotilin (2018) shows when full and no information revelation

are optimal. The dual of Kolotilin (2018) is similar to the one we derive in this paper. We

go beyond this special class of sender-receiver interactions and consider arbitrary games

in full generality. Moreover, we offer an economic interpretation of the dual that sheds

new light on the information-design problem and use this approach to derive general

optimality properties.

In the literature on robust mechanism design, duality of linear programming has been

used in a number of papers to inspire the construction of mechanisms that guarantee a

minimal level of revenues (see, e.g., Bergemann et al. (2016), Du (2018), Brooks and

Du (2018)). These papers search for mechanisms—hence, games for the agents to play—

1See, e.g., Alonso and Camara (2018), Alonso and Camara (2018), Gentzkow and Kamenica (2016b),

Gentzkow and Kamenica (2016a), Mathevet and Lipnowski (2018a), Mathevet and Lipnowski (2018b),

Galperti (2018).
2Taneva (2015) also formulates the information-design problem as the selection of the best Bayes-

correlated equilibrium. By contrast, Mathevet, Perego, and Taneva (2017) extend the idea of concavifi-

cation to information-design problems and allow for a rich set of selection criteria and solution concepts.

In the context of a global game with adversarial selection, Inostroza and Pavan (2017) studies optimal

stress-tests for banks seeking funding from heterogeneously informed investors. The problem of the op-

timal dynamic information design has been analyzed by Ely (2017), Doval and Ely (2016), Makris and

Renou (2018), Ely and Szydlowski (2019).
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that have desirable properties across all information structures. By constrast, the present

paper takes the game as given and uses duality to search for information structures that

have desirable properties according to the designer’s given objective.

2 The Information-Design Problem

This section introduces the information-design problem and casts it in terms of the op-

timal choice of a Bayes-Correlated Equilibrium (Bergemann and Morris (2016)). For

simplicity of exposition, we will focus on the case where players do not have exogenous

information about the payoff-state.

Primitives. There is a finite set of players N = {1, . . . , n} and a finite set of payoff-states

Ω. Players have a common prior belief µ ∈ ∆(Ω). With no loss of generality, we let

prior µ to have full support on Ω. An information structure, denoted by (S, π), consists

of a finite set of signals Si for each player i ∈ N and a function π : Ω → ∆(S), where

S = S1×· · ·×Sn. Without loss of generality, assume that for all s ∈ S there exists ω ∈ Ω

such that π(s|ω) > 0. We sometimes abuse notation by writing π for the information

structure (S, π). Let Π be the set of all information structures.

Game and Equilibrium Concept. After privately observing the signal realizations gener-

ated by (S, π), players interact in a game. Each player i has a finite set of actions Ai and

preferences described by the utility function ui : A× Ω→ R, where A = A1 × · · · × An.

We denote G = (Ω, (Ai, ui)i∈N , µ) the basic game. A basic game when paired with any

information structure π induces an incomplete-information game, denoted (G, π). We

focus on Bayes-Nash equilibria (BNE) of such games. A (behavioral) strategy of player

i in (G, π) is a map σi : Si → ∆(Ai). A strategy profile σ = (σi)i∈N is a BNE of (G, π)

if for each i, si ∈ Si, and ai ∈ Ai with σi(ai|si) > 0,∑
a−i∈A−i,s−i∈S−i,ω∈Ω

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]σ(ai, a−i|si, s−i)π(si, s−i|ω)µ(ω) ≥ 0

for all a′i ∈ Ai, where σ(ai, a−i|si, s−i) :=
∏N

j=1 σj(aj|sj). Let BNE(G, π) be the set of all

BNE’s of game (G, π).

Information-Design Problem. The information designer is a third-party with preferences

on the outcome of the game described by the payoff-function v : A × Ω → R. The

designer chooses the information structure π, hence determines which game (G, π) that

is played by players. We assume that she can costlessly commit to any π in Π. Her prior

belief is also µ as for the players. For every π ∈ Π, we define the value of π as

V (π) = max
σ∈BNE(G,π)

∑
a∈A,s∈S,ω∈Ω

v(a, ω)σ(a|s)π(s|ω)µ(ω).
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Note that the value is computed under the assumption that the designer-preferred equi-

librium is selected. This selection criterion is with loss of generality, but its nice prop-

erties have made it especially common in most of the information-design literature

(see Bergemann and Morris (2018) for a discussion). The information-design problem

faced by the designer consists of choosing π to maximize V (π). Its value function is

V ∗ := maxπ∈Π V (π). In the next section, we will show that this value is in fact always

attained by some information structure π, hence the use of the max in our definition.

3 The Primal of Information Design

This section characterizes the set of all outcomes—namely, joint distributions of actions

a and states ω—that can arise in some equilibrium of the game for some information

structure that the designer chooses. This characterization, which is due to Bergemann

and Morris (2016), offers a convenient linear structure to the set of feasible outcomes and

will be used in the next section to derive the dual of information design.

Consider an information structure π and recall that each player acts on her private

signal by choosing an action, possibly at random. Thus, we can view each information

structure as inducing, for each ω, a distribution over pure-action profiles.

Definition 1 (Outcome Function). An outcome function is a mapping x : Ω→ ∆(A).

Not all outcome functions are compatible with equilibrium behavior. We say that an

outcome function is feasible if it arises for some information structure π and some equi-

librium of the game (G, π). More formally:

Definition 2 (Feasible Outcomes). An outcome function x is feasible for G if there exists

π ∈ Π and σ ∈ BNE(G, π) such that, for every ω ∈ Ω and a ∈ A,

x(a1, . . . , an|ω) =
∑
s∈S

π(s|ω)
∏
i∈N

σi(ai|si), (1)

Denote X(G) the set of feasible outcome functions for G.

An outcome function can be interpreted either as a probabilistic description of what

happens in a game or as an explicit recommendation on how players should behave.

Clearly, for such recommendations to coincide with actual behavior, it must be incentive

compatible to follow them.

Definition 3 (Obedience). The outcome function x is obedient for G if, for each i ∈ N
and ai ∈ Ai,∑

ω∈Ω,a−i∈A−i

[ui(ai, a−i;ω)− ui(a′i, a−i;ω)]x(ai, a−i|ω)µ(ω) ≥ 0, a′i ∈ Ai. (2)
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As the next result demonstrates, obedience fully characterizes the set of feasible outcomes.

Theorem 1 (Feasibility—Bergemann and Morris (2016)). The outcome function x is

feasible for G if and only if it is obedient for G.

As observed by Bergemann and Morris (2016), the combination of the linear structure

of the obedience conditions and the linearity of the designer’s expected payoff gives rise

to a linear program. In the primal of this program, the designer chooses an obedient x

to maximize his expected payoff. We denote this primal problem by P . Our objective

is to derive its dual formulation, which we shall denote by P∗. To this end, it is more

convenient to work in terms of the joint distribution over actions and states induced by

the pair of outcome function x and prior µ. That is, given every x : Ω→ ∆(A), let

χ(a, ω) := x(a|ω)µ(ω), a ∈ A, ω ∈ Ω.

Note that χ is a vector in RA×Ω. Given this, P can be expressed as follows:

P = max
χ∈RA×Ω

∑
ω∈Ω,a∈A

v(a, ω)χ(a, ω),

sub to, ∀i ∈ N,ω ∈ Ω, a ∈ A, a′i ∈ Ai :

(O)
∑

ω∈Ω,a−i∈A−i
[ui(ai, a−i;ω)− ui(a′i, a−i;ω)]χ(ai, a−i, ω) ≥ 0,

(PC)
∑

a∈A χ(a, ω) = µ(ω),

(P ) χ(a, ω) ≥ 0.

The first constraint is obedience (O). The second constraint (prior consistency, PC ) and

the third constraint (positivity, P) ensure that χ is a probability distribution. Given any

such χ, it is straightforward to derive the corresponding outcome function x. To see this,

fix a χ and a profile (a, ω). Define x(a|ω) := χ(a,ω)
µ(ω)

and notice that x(a|ω) ≥ 0, because

of non-negativity of χ, and
∑

a x(a|ω) = 1, because of prior consistency.

We can now address the issue of existence of a solution. One can easily check that the

subset of RA×Ω defined by the constraints of P is compact and non-empty. It is non-empty

because the basic game G must have at least one equilibrium, which is a feasible outcome

under a fully uninformative π and hence corresponds to an obedient x by Theorem 1.

Also, the objective of P is continuous. Therefore, by standard arguments P has a solution.

As anticipated in Section 2, this implies that we can write V ∗ = maxπ∈Π V (π).

4 The Dual of Information Design

In this section, we derive the dual representation of the information-design problem. We

discuss its economic interpretation and the new insights it offers. We also characterize
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some general properties of its solutions.

4.1 Derivation of the Dual

Instead of attacking the information-design problem directly through P , we will look at

its dual. The dual problem P∗ involves new control variables, which we divide into two

vectors, p and λ. The first vector belongs to RΩ and corresponds to the prior-consistency

constraints: To each constraint
∑

a∈A χ(a, ω) = µ(ω) there corresponds one variable p(ω).

The second vector λ is obtained by stacking on top of each other the player-specific vectors

λi ∈ RAi×Ai . That is, each entry of λ corresponds to some player i and some pair (ai, a
′
i)

of his actions. The entry λi(ai, a
′
i) corresponds to the obedience constraint requiring that

player i should prefer to follow his recommendation ai to deviating to a′i.

Proposition 1. The dual information-design problem P∗ consists of solving

P∗ = min
p∈RΩ

λ1∈RA1×A1

...
λn∈RAn×An

∑
ω∈Ω

µ(ω)p(ω),

sub to, ∀i ∈ N,ω ∈ Ω, a ∈ A, a′i ∈ Ai :

(?) p(ω) ≥ v(a, ω) +
∑
i∈N

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i),

(Pλ) λi(ai, a
′
i) ≥ 0.

The dual P∗ is just a new mathematical problem derived from P . It is of special

interest, however, because by Strong Duality, if P and P∗ have an optimal solutions, their

optimal values are equal, i.e. P = P∗. In our case, the dual objective takes a remarkably

simple form. It depends only on the prior, which means that it is unaffected by any change

in any other aspect of the basic game G. These aspects are all conveniently collected in

the constraint (?). The dual also conveys a very simple goal for the designer: Choose

each p(ω) as small as possible—–subject, of course, to condition (?). The other dual

variables λ can be chosen with the sole objective of relaxing (?). Since these conditions

have to hold across all as and λs, they impose non-trivial lower bounds on p.

Another reason for being interested in P∗ is that its solutions (p, λ) and the solutions

χ of P are tightly related to each other. This relationship is summarized by a set of

complementary-slackness conditions (CS), as the next result shows. The proof is standard

and therefore omitted.
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Proposition 2. Let χ satisfy the constraints of P and (p, λ) satisfy the constraints of P∗.
Then, χ and (p, λ) are optimal solutions for the two respective problems if and only if,

for all i ∈ N , ω ∈ Ω, a ∈ A, a′i ∈ Ai,

CS1. λi(ai, a
′
i)
{∑

ω′∈Ω,a−i∈A−i
[ui(ai, a−i, ω

′)− ui(a′i, a−i, ω′)]χ(ai, a−i, ω
′)
}

= 0,

CS2. p(ω)
{∑

a′∈A χ(a′, ω)− µ(ω)
}

= 0,

CS3. χ(a, ω)

{
p(ω)− v(a, ω)−

∑
i∈N

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i)

}
= 0.

In short, the combination of the dual and the complementary slackness conditions

offers an alternative way to find optimal feasible outcomes and to characterize their

properties. In this sense, an immediate corollary of Proposition 1 and 2 is the following.

Corollary 1. Fix ω ∈ Ω and a′, â ∈ A. If for all λ

v(a′, ω) +
∑
i∈N

∑
a′′i ∈Ai

[ui(a
′
i, a
′
−i, ω)− ui(a′′i , a′−i, ω)]λi(a

′
i, a
′′
i )

> v(â, ω) +
∑
i∈N

∑
a′′i ∈Ai

[ui(âi, â−i, ω)− ui(a′′i , â−i, ω)]λi(âi, a
′′
i ),

then every optimal χ satisfies χ(â, ω) = 0.

This corollary can be used to quickly prune the support of optimal χ’s, as we illustrate

in the examples of Section 5.

4.2 The Economics of the Dual

The dual of the information-design problem provides a novel perspective on the economics

of information design. Conditions (?) and complementary slackness convey a great deal

of information on both how to optimally choose p(ω) and how to interpret p(ω). To

gain intuition, let’s first consider the hypothetical case in which the designer sets λ = 0.

When this is the case, our dual constraint (?) implies that it is optimal to set p(ω) =

maxa v(a, ω). Hence, the resulting value of choosing such pair of dual variables (p, λ)

is
∑

ω µ(ω) maxa v(a, ω). This upper bound represents the first-best the designer can

achieve in this information-design problem: in fact, it implements the designer’s most

favorite action at each different state. Of course, this recommendation entirely ignores

players’ incentives and, therefore, it may not be even feasible in the primal, except in

very special situations. This translates into the dual problem: the designer may be able

to do better, i.e. find prices p(ω) that lead to a smaller value of the dual, by choosing λ
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that are not necessarily all equal to zero. To illustrate how, suppose that the pair (a, ω)

has the following property: For some player i, action ai is sub-optimal given ω and a−i.

More formally, for some i and (a, ω) with χ(a, ω) > 0, there is an a′i, such that

ui(ai, a−i, ω) < ui(a
′
i, a−i, ω).

In this case, by letting λi(ai, a
′
i) > 0, the designer can relax constraint (?) and lower p(ω)

below v(a, ω). In other words, the designer benefits when she manages to induce a player

to choose an action which that player would regret choosing ex post, namely, under

complete information about (a−i, ω). In order to induce such ex-post “mistakes,” the

designer must withhold some information from player i, either about the state or about

the action of others. These observations explain why the designer may prefer partial to

full information disclosure. Ultimately, the value of p(ω) results from a trade-off between

the direct payoff v(a, ω) and her ability to benefit by inducing players to choose ex-post

suboptimal actions.3

There is, of course, a limit to the extent with which the designer can induce such

ex-post suboptimal actions for the players. Indeed, as captured by condition (CS1), she

can let λi(ai, a
′
i) > 0 if and only if∑
ω∈Ω,a−i∈A−i

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]χ(ai, a−i, ω) = 0,

that is, if and only if player i is indifferent between ai and a′i given the information that

he learns from his recommendation ai about (a−i, ω). aThus, this condition precisely

pins down how the designer has to design her information structure to achieve her goal.

If indifference does not hold, she is either providing too much or too little information to

the players.

These observations suggest an economic interpretation for each p(ω) and the dual

objective. We can view the design of an information structure as doing the following. To

form a signal profile s and determine its meaning for the players, the designer ‘buys’ the

probability that s occurs in right proportions from each state ω, which can be viewed as

a ‘seller.’ Each seller ω has a stock µ(ω) of probability to sell to all signal profiles. Thus,

as usual, p(ω) captures the shadow value of that probability stock µ(ω). Given this, the

dual objective can be interpreted as minimizing the value of having ‘one extra unit’ of

total supply of probability. Intuitively, if this value were not minimized, then the current

stock of probability could be used more effectively. Equivalently, a better information

structure could be designed.

3Note that if π is fully reveals to every player ω and the actions of others, we must have p(ω) = v(a, ω).
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Through the lens of this interpretation, we can view p(ω) as the unit price the designer

pays to seller ω. To see this, fix an action profile a. If the designer buys probability from

seller ω to generate a (i.e., χ(a, ω) > 0), she has to pay

p(ω) = v(a, ω) +
∑
i∈N

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i).

This quoted price has three components. First, a baseline price, given by v(a, ω).

This suggests that, everything else equal, the more the designer gains by inducing an

outcome a in state ω, the higher the price seller ω will charge. Second, the seller applies

a discount to the baseline price for each player that the designer induces to make an

ex-post mistake, that is, to choose an action that is ex-post strictly sub-optimal. Third,

a penalty is instead applied to the baseline price for each player that the designer induces

to choose an ex-post strictly optimal action. Reaping these discounts while avoiding

the penalties gives rise to trade-offs that uncover the essence of the information-design

problem.

Triggering a discount requires setting the corresponding λi strictly positive. However,

λi does not depend on a−i nor ω and so cannot be tailored to only the situations where ai is

ex-post suboptimal for player i. Thus, even if ui(ai, a−i, ω) > ui(a
′
i, a−i, ω), the designer

may still set λi(ai, a
′
i) > 0. This happens if the recommendation ai arises in two (or

more) states, say, ω and ω′, or together with two (or more) recommendations for the

other players, say, a−i and a′−i. When player i’s ex-post preference between ai and a′i
depends on ω (holding a−i fixed), a trade-off arises between states for the behavior of a

single player. This trade-off has global effects on ps of different states and its solution

depends on their likelihood under µ. By contrast, when player i’s ex-post preference

between ai and a′i depends on a−i (holding ω fixed), a trade-off arises within state ω

and between players’ behaviors for that state. This has only local effects on p(ω) and is

managed through the choice of a.4

4.3 Properties of Optimal Design

The previous discussion reveals some general properties of optimal information design.

To state them concisely, let

Q(a, ω|λ) =
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i).

4Note that this within-state trade-off can arise only in problems with multiple players. However, the

between-state trade-off also arises in Bayesian persuasion with a single receiver.
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We can interpret Q(a, ω|λ) as a measure of persuasion, namely, the extent to which the

designer manages to exploit information to her advantage when inducing a in state ω.

We will say that information is successfully exploited at (a, ω) if Q(a, ω|λ) < 0 and hence

p(ω) < v(a, ω).

Proposition 3. Let χ be an optimal solution of P and let (a, ω) have positive probability

under χ. Then, information is successfully exploited at (a, ω) if, for some player i and

some deviation a′i ∈ Ai, we have that

1. ex post, player i strictly prefers a′i to ai,

2. after learning only recommendation ai, player i is indifferent between ai and a′i.

This result follows from the previous observations and so the proof is omitted.

One can view this property as an analog and a generalization to multi-player con-

texts of properties of the optimal information structures in the single-receiver setting of

Kamenica and Gentzkow (2011) (hereafter, KG). By Proposition 3, the designer can im-

prove her objective —–in the sense of lowering p(ω)—–by inducing some player to choose

actions that are strictly dominated ex-post. In KG’s judge example, the prosecutor im-

proves her payoff by inducing the judge to convict the plaintiff with positive probability

when he is actually innocent, which is strictly suboptimal for the judge. More generally,

a key principle of Bayesian persuasion is that the designer benefits by pooling “bad” and

“good” states in the same signal: As long as the receiver remains sufficiently confident

about the good states, such pooling increases the chances of desirable outcomes for the

designer.

This being said, the single- and multi-players problems differ in an important way.

In the former, the designer only faces a trade-off between states. For example, she can

recommend an action to the receiver which happens to be ex-post suboptimal in a state

but strictly optimal in an other.5 In games, instead, the designer faces an additional

trade-off, not just between different states, but also within a given state. For example,

she can recommend an action to some player that is ex-post suboptimal or not depending

on the actions that other players take in that same state. This interdependence of players’

incentives complicates the search for optimal information structures.

5In KG’s main example, the recommendation to convict the plaintiff arises in both states. It is strictly

suboptimal to follow such recommendation when the plaintiff is innocent, which allows the prosecutor

to lower p(innocent) below v(convict, innocent). But it is strictly dominant in the guilty state, which

constrains p(guilty) above v(convict, guilty). It is optimal for the designer-prosecutor to solve the trade-

off in this way because, as we know, in that example µ(guilty) > µ(innocent).
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A second aspect that is highlighted by the result above is the optimal way to induce

ex-post suboptimal actions. Information has to be designed so as to render the involved

players exactly indifferent between the recommended action and a possible alternative.

Again, by analogy, in KG’s main example, the optimal information structure makes

the judge exactly indifferent between following the “recommendation” to convict and

the deviation to acquit. More generally, Proposition 5 in KG shows that whenever an

optimal signal induces the receiver to have an interior belief (a necessary condition to

lead to ex-post mistakes), he must be indifferent between the recommended action and

some alternative. When studying information design in games, besides the fact that

there are multiple players who can be induced to choose ex-post suboptimal actions,

the difference is that, for each player i, the relevant “state” is (a−i, ω). Therefore, the

designer can also manipulate player i’s uncertainty about his opponents’ behavior to

induce a suboptimal ai’s.

Another general property that we can derive from the dual is the following.

Proposition 4. Let χ be an optimal solution of P and let (a′, ω) and (a′′, ω) have positive

probability under χ. If v(a′, ω) > v(a′′, ω), then information is exploited more at (a′, ω)

than at (a′′, ω), that is, Q(a′, ω|λ) < Q(a′′, ω|λ).

Proposition 4 can also be seen as generalizing properties of Bayesian persuasion.

Again, in KG’s main example, in the state where the plaintiff is innocent, the optimal

information structure induces two recommendations (i.e., acquit and convict) and the

prosecutor strictly prefers to convict. Moreover, the prosecutor induces the judge to

choose a dominated action only for the recommendation she likes better. Proposition 4

significantly generalizes the insights from KG’s example by showing that this property of

the solution holds in general problems, where multiple players interact strategically and

the designer’s payoff may also depend on the state.

5 Illustrative Examples: Investment Games

5.1 The Problem

This example is borrowed from Bergemann and Morris (2018). Its goal is to illustrate

the dual approach to solving the information-design problem and compare it with the

more direct approach followed by Bergemann and Morris (2018).

The basic game is as follows. Two firms have to choose whether to invest (y) in a

project or not (n). That is, Ai = {y, n}, i ∈ N . The project can be either good or bad:
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Ω = {g, b}. Firm i’s payoffs ui(a1, a2, ω) are described in Table 1. The designer (the

“government”) wants to foster investment, irrespective of the quality of the project. Its

payoff is given by
v(a1, a2) = I{a1 = y}+ I{a2 = y},

where I{·} is the indicator function.

Firm 2

y n

Firm 1
y ε− 1, ε− 1 − 1, 0

n 0,−1 0, 0

ω = b

Firm 2

y n

Firm 1
y ε+ q, ε+ q q, 0

n 0, q 0, 0

ω = g

Table 1: Firms’ payoffs in G

We make the following assumptions on parameters. The prior µ(g) = µ(b) = 1
2

and

0 < q < 1. Thus, without additional information neither firm wants to invest. This

parametrization is convenient because, if ε > 0, the game features strategic comple-

mentarities; if ε < 0, instead, the game features strategic substitutabilities. Finally, we

assume that ε is small so that y is dominant in state g and n is dominant in state b—

specifically, |ε| ≤ q − 1
2
.

5.2 Independent Decisions: the Single-Receiver Case

Consider first the case of ε = 0. In this case, there are no payoff-externalities, so the

firms’ decisions are independent of each other. Thus, each firm’s problem can be solved

independently and, after some relabeling, it becomes equivalent to the leading example

in KG. We will therefore solve this case as if there were only one firm and omitting the

index i. Let
w(a, ω, λ) = v(a, ω) +

∑
a′∈A

[u(a, ω)− ui(a′, ω)]λ(a, a′).

Given this, the dual becomes

P∗ = min
p∈RΩ, λ∈RA×A

1

2
p(b) +

1

2
p(g),

sub to, ∀ω ∈ Ω, a ∈ A, a′ ∈ A :

(?) p(ω) ≥ w(a, ω, λ),

(Pλ) λ(a, a′) ≥ 0.
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Fix an arbitrary λ ≥ 0 and consider constraint (?). When the state if “favorable” for the

designer, i.e. ω = g, the function w takes the following values:

w(y, g, λ) = 1 + qλ(y, n),

w(n, g, λ) = −qλ(n, y).

Since w(y, g, λ) > w(n, g, λ) for every λ, constraint (?) implies that

p(g) = 1 + qλ(y, n).

Similarly, when the state is “unfavorable,” i.e. ω = b, we have that

w(y, b, λ) = 1− λ(y, n),

w(n, b, λ) = λ(n, y).

Thus, in this case the maximum of right-hand side of (?) and so the tighter constraint

on p(b) depends on the choice of λ.

Using these steps, we can re-write the dual problem as

P∗ = min
λ(y,n),λ(n,y)

(1

2

(
1 + qλ(y, n)

)
+

1

2
max{1− λ(y, n), λ(n, y)}

)
It is easy to see that it is optimal to set λ(n, y) = 0: It is not possible to set it lower

than zero, and any higher level renders it harder to minimize the whole function. Given

this and that 0 < q < 1, it is optimal to set λ(y, n) as small as possible while satisfying

1 − λ(y, n) ≤ 0 = w(n, b, λ). Therefore, λ(y, n) = 1. In sum, this yields p(g) = 1 + q,

p(b) = 0, and a value P∗ = 1+q
2

.

While the solution to P∗ tells us the optimal payoff of the designer, it reveals little

about the optimal information structure. It is immediate to see that her payoff is 1
2

from

a fully informative structure and 0 from a fully uninformative structure. Therefore, we

can at least conclude that neither of these structures is optimal.

To calculate the optimal x, we can use the complementary slackness conditions, as

pointed out in Proposition 2. First, by (CS3), since w(y, g, λ) > w(n, g, λ) for all λ, we

must have χ(n, g) = 0 and so x(y|g) = 1. Second, since λ(y, n) > 0, by (CS1) the firm

must be indifferent between the two actions conditional on being recommended y. This

requires that
−x(y|b) + qx(y|g) = 0.

Therefore, x(n|b) = q. Note that under such x, conditional on being recommended n,

the firm knows that the state is b and strictly prefers n to y, which is consistent with

λ(n, y) = 0 and (CS1). Also, both χ(n, b) > 0 and χ(y, b) > 0 and

0 = p(b) = w(y, b, λ) = w(n, b, λ)
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for the optimal λ, which satisfies (CS3). Finally, note that

Q(n, b|λ) = 0 > −1 = −λ(y, n) = Q(y, b|λ),

which is an instance of the general property in Proposition 4: The designer “exploits

information” more when inducing the firm to invest in the unfavorable state b, which the

designer prefers to not invest.

5.3 Strategic Decisions: the Multi-Player Case

We now consider the case of ε 6= 0. In this case, firms interact strategically in the context

of a “proper” game. Relative to the previous case, the objective of the dual is unchanged.

The dual constraint (?), instead, becomes the following: For all i = 1, 2, ω ∈ Ω, a ∈ A,

and ai ∈ Ai,

(?) p(ω) ≥ w(a, ω, λ) := v(a, ω) +
∑
i=1,2

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i)

and λi(ai, a
′
i) ≥ 0. As argued by Bergemann and Morris (2018), it is without loss of

generality to consider symmetric solutions: This is because the problem is symmetric

and the feasible set X(G) is convex. For the dual, this means that χ(y, n, ω) = χ(n, y, ω)

for all ω and λ1 = λ2.

Given this, we can easily compute the function w(a, ω, λ). When ω = b, we have

w(a1, a2, b, λ) =



2− 2[1− ε]λ(y, n) if (a1, a2) = (y, y)

1− λ(y, n) + [1− ε]λ(n, y) if (a1, a2) = (y, n)

1 + [1− ε]λ(n, y)− λ(y, n) if (a1, a2) = (n, y)

2λ(n, y) if (a1, a2) = (n, n).

Similarly, when ω = g, we have

w(a1, a2, g, λ) =



2 + 2[q + ε]λ(y, n) if (a1, a2) = (y, y)

1 + qλ(y, n)− [q + ε]λ(n, y) if (a1, a2) = (y, n)

1− [q + ε]λ(n, y) + qλ(y, n) if (a1, a2) = (n, y)

−2qλ(n, y) if (a1, a2) = (n, n).

Using this, we can quickly solve P∗ and derive the optimal information structure in few

steps:

Step 1: Since 0 < q < 1 and |ε| ≤ q − 1
2

imply that |ε| ≤ q
2
, we have that for all λ

w(y, y, g, λ) > w(y, n, g, λ) = w(n, y, g, λ) > w(n, n, g, λ).
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Therefore, p(g) = 2+2[q+ε]λ(y, n) and x(y, y|g) = 1 by (CS3). That is, upon inspection

of the dual, we can immediately conclude that the designer will never recommend any

profile other than a = (y, y) conditional on state ω = g.

Step 2: Since x(y, y|g) = 1, we must have x(n, n|b) > 0 which implies by (CS3) that

p(b) = 2λ(n, y) = 0.

Otherwise, at least one firm always receives the recommendation y, which renders x

uninformative for that firm about the state; hence, that firm would never choose y,

contradicting x(y, y|g) > 0. (Recall that an optimal solution must, first of all, be feasible,

which in our case means obedient.) Since the recommendation n reveals that the state

is b, the firm cannot be indifferent and so λ(n, y) = 0 by (CS1).

Step 3: Two cases remain to be considered:

Case 1. 0 = p(b) = w(y, y, b, λ) > w(y, n, b, λ) = w(n, y, b, λ) if and only if λ(y, n) = 1
1−ε

and ε > 0. In this case, x(y, n|b) = x(n, y|b) = 0 by (CS3). Also, since the candidate

λ(y, n) > 0, each firm must be indifferent by (CS1) after receiving recommendation y.

This holds provided that

0 =µ(g) [ui(y, y, g)x(y, y|g) + ui(y, n, g)x(y, n|g)]

+ µ(b) [ui(y, y, b)x(y, y|b) + ui(y, n, b)x(y, n|b)]

or equivalently

(q + ε)x(y, y|g) + qx(y, n|g) = (1− ε)x(y, y|b) + x(y, n|b),

which boils down to
(q + ε) = (1− ε)x(y, y|b) + x(y, n|b).

Therefore, we conclude that x(y, y|b) = q+ε
1−ε . The value of P∗ in this case is

P∗ =
1

2
p(g) = 1 +

q + ε

1− ε
.

Firm 2

y n

Firm 1
y q+ε

1−ε 0

n 0 1− q+ε
1−ε

x(a1, a2|ω = b)

Firm 2

y n

Firm 1
y 1 0

n 0 0

x(a1, a2|ω = g)

Table 2: Optimal x for strategic complements (i.e., ε > 0)
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Firm 2

y n

Firm 1
y 0 q + ε

n q + ε 1− 2q − 2ε

x(a1, a2|ω = b)

Firm 2

y n

Firm 1
y 1 0

n 0 0

x(a1, a2|ω = g)

Table 3: Optimal x for strategic substitutes (i.e., ε < 0)

Case 2. 0 = p(b) = w(y, n, b, λ) = w(n, y, b, λ) > w(y, y, b, λ) if and only if λ(y, n) = 1

and ε < 0. In this case, x(y, y|b) = 0 by (CS3). Again, since the candidate λ(y, n) > 0,

each firm must be indifferent by (CS1) after receiving recommendation y. This again

requires that
(q + ε) = (1− ε)x(y, y|b) + x(y, n|b).

Therefore, x(y, n|b) = q + ε. The value of P∗ in this case is

P∗ =
1

2
p(g) = 1 + q + ε.

Tables 2 and 3 report the optimal information structures. As already noted by Berge-

mann and Morris (2018), in the case of strategic complementarities, the optimal x features

public information. Inutitively, this is because with strategic complementarities each firm

is more willing to invest when recommended y knowing that, if the state is b, also the

other firm will invest, which reduces the loss of the bad decision. This higher willingness

to invest allows the designer to pool more the unfavorable state b with the favorable g in

the recommendation y, thereby increasing the overall chances of investment. In the case

of strategic substitutabilities, instead, the optimal x features private information. Intu-

itively, this is because with strategic substitutabilities instead each firm is more willing

to invest when recommended y knowing that, if the state is b, the other firm will not

invest.
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A Proofs

Proof of Proposition 1. It is convenient to first write P in matrix form. Fix an arbi-

trary total ordering of the set A × Ω. We denote by v ∈ RA×Ω the vector whose entry

corresponding to (a, ω) is v(ω, a). For every player i, let Ui ∈ R(Ai×Ai)×(A×Ω) be a matrix

thus defined: For each row (a′i, a
′′
i ) ∈ Ai × Ai and column (a, ω) ∈ A× Ω, denote

Ui((a
′
i, a
′′
i ), (a, ω)) =

ui(a′i, a−i, ω)− ui(a′′i , a−i, ω) if a′i = ai

0 else.

Define the matrix U by stacking all the matrices {Ui}i∈N on top each other. Finally,

define the indicator matrix I ∈ {0, 1}Ω×(A×Ω) such that, for each row ω′ and column

(a, ω′),

I(ω′, (a, ω)) :=

1 if ω′ = ω

0 else.

With this notation, P can be written as follows:

P = max
χ

v′χ

sub to: Uχ ≥ 0,

Iχ = µ,

χ ≥ 0.

(P)

Given this, by standard linear-programming arguments6 the dual P∗ can be written

as
min
λ,ζ
−λ′0− ζ ′µ

subject to for all i = 1, . . . , N and ai, a
′
i ∈ Ai,

λi(ai, a
′
i) ≥ 0,

for all ω ∈ Ω, ζ(ω) ∈ R (i.e., it is unconstrained), and for all (a, ω) ∈ A× Ω

v(a, ω) ≤ −ζ(ω)−
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i)

 .

Letting p = −ζ, the objective simplifies to

min
λ,p

∑
ω∈Ω

p(ω)µ(ω).

The second set of constraints can be written as

p(ω) ≥ v(a, ω) +
N∑
i=1

∑
a′i∈Ai

[ui(ai, a−i, ω)− ui(a′i, a−i, ω)]λi(ai, a
′
i).

6See Bertsimas and Tsitsiklis (1997) for a reference.
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Proof of Proposition 4. By condition (CS3), it must be that

0 < v(a′, ω)− v(a′′, ω)

=
N∑
i=1

∑
âi∈Ai

[ui(a
′′
i , a
′′
−i, ω)− ui(âi, a′′−i, ω)]λi(a

′′
i , âi)

−
N∑
i=1

∑
âi∈Ai

[ui(ai, a−i, ω)− ui(âi, a−i, ω)]λi(ai, âi)

and therefore Q(a′, ω|λ) < Q(a′′, ω|λ).
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