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Abstract

We study a dynamic learning model in which heterogeneously connected

Bayesian players choose between two activities: learning from one’s own experi-

ence (work) or learning from the experience of others (search). Players who work

produce an inflow of information which is local and dispersed across the society.

Players who search aggregate the information produced by others and facilitate

its diffusion, thereby transforming what is inherently a private good into infor-

mation that everyone can access more easily. The structure of social connections

affects the interaction between equilibrium information production and its so-

cial diffusion in ways that are complex and subtle. We show that increasing the

connectivity of the society can lead to a strict decrease in the quality of social

information. We link these inefficiencies to frictions in peer-to-peer communica-

tions. Moreover, we find that the socially optimal allocation of learning activities

can differ dramatically from the equilibrium one: under certain conditions, the

planner would reverse the equilibrium allocation, forcing highly connected play-

ers to work, and moderately connected ones to search. We conclude with an

application that studies how resilient a society is to external manipulation of

public opinion through changes in the meeting technology.
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1. Introduction

This paper studies learning in large connected societies. The novelty of our approach is to

explicitly capture the interactions between the creation of information and its social diffusion.

When a society is effective at diffusing information, this reduces individual incentives to

create new information. However, when those who create information are few and peripheral,

this hinders the diffusion of information. Our goal is to study the effects of these interactions

on learning and their dependence on the structure of social connections. We identify a novel

externality that we call the noise-amplification effect. This is an equilibrium mechanism by

which noise reverberates and amplifies throughout the society, a phenomenon akin to the

telephone game. We show the implications of this externality on different aspects of social

learning: Do societies allocate learning tasks among differently connected players in ways

that promote learning? Are more connected societies necessarily better informed? Are they

more resilient to the external manipulation of public opinions?

We introduce a dynamic learning model for heterogeneously connected societies. A popula-

tion of Bayesian players choose how to allocate time between two activities: learning directly

from information sources (work) and learning indirectly from others (search). Players who

work produce an inflow of information, which is initially local, available only to the worker.

Indirect learning is frictional, in two distinct ways. First, in order to learn from others a

player needs to meet them–and this takes time. The rate at which a player can meet others

is heterogeneous and determined by her type, representing how connected she is to the rest

of society. Second, searcher-to-searcher communication is potentially subject to frictions.

Namely, we allow for some information to be lost in these exchanges. A distinguishing fea-

ture of our model is that it captures the important social role played by those who search

for information. While not producing new information, searchers aggregate the information

produced by others and facilitate its diffusion. By doing so, they transform what is inher-

ently a private good, information produced by a worker for herself, into a more public one,

information that can be accessed more easily by everyone else. This increases the value of

search and attracts a group of marginally connected players into this activity. Their diffu-

sion ability, however, is no better than their ability to create information. This introduces

a distortion that reverberates through the rest of the searching population, thereby causing

its amplification.

Our main contribution is to identify novel inefficiencies in social learning, generated by

the interaction between information production and its diffusion. First, we highlight the

critical role played by those who search for information in the aggregation and diffusion of

information. A society needs searchers to achieve some degree of informational efficiency.

However, not all searchers are alike and the structure of social connections can affect efficiency
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in ways that are complex and subtle. To explore this, we study the equilibrium consequences

of increasing the connectivity of a society. We show that increasing connectivity can lead to

a strict decrease in the quality of social information. Our results reveal how this inefficiency

is directly linked to communication frictions. Second, we analyze how players of different

connectivity levels choose their learning activity in equilibrium, and compare this to the

planner’s solution where each type is allocated to an activity to maximize social welfare.

This allows us to study more generally the inefficiencies associated with social learning. We

show that allocation of activities in the planner’s solution can be in direct contrast with the

one in equilibrium, especially when communication frictions are severe. In such cases, the

planner’s solution requires players with high connectivity to be the producers of information

in the society, whereas in equilibrium, this role is necessarily taken on by players with low

connectivity. Third, we apply our model to study how resilient a society is to external

manipulation of public opinion and how this depends on the connectivity of the society. An

important implication of our analysis is that societies that are very effective in aggregating

and diffusing information are also particularly susceptible to manipulations.

This paper combines ideas and modeling tools from literatures such as strategic experimen-

tation, social networks, and search. First, in order to study both the equilibrium production

of information and its social diffusion, we introduce heterogeneity across players in a parsi-

monious way. We focus on a single dimension of heterogeneity: how connected each player

is to these society. By doing so, we assume that the connectivity of a player determines

the rate at which she meets others, not who she meets. This affects the frequency with

which she encounters opportunities to receive, as well as to transfer information to others.

While this formulation abstracts from other interesting ways in which the network structure

can affect learning dynamics, we argue that it captures its most prominent feature, namely

heterogeneity in the number of connections. Second, we allow for frictions in searcher-to-

searcher communication. These frictions are modeled as a garbling, a decrease in the quality

of a signal as it travels among searchers. These frictions create a gap between first-hand in-

formation, the information created by players who work, and second-hand information, the

information collected by anybody else. When these frictions are absent, our model reduces

to the special case in which players perfectly observe each other’s beliefs upon meeting.

The stationary equilibrium of this game is unique and has a remarkably simple structure.

Specifically, the allocation into activities is fully characterized by a threshold connectivity

level, below which players work and, above which players search. Intuitively, more connected

players meet others at a higher rate and, rather than working, they prefer to learn from

them. Due to their higher connectivity level, searchers are also easier to meet. Therefore,

the information they carry is made more accessible to everybody else in the society, further

attracting players away from work. Frictions in peer-to-peer communication drive a wedge
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between a searcher’s ability to aggregate information and her ability to diffuse it to others.

In equilibrium, there exists a group of moderately connected players who decide to search,

but doing so imposes a negative externality on the rest of the society. Due to communication

frictions, these players’ diffusion abilities as searchers are inferior to their diffusion abilities

as workers. This introduces an inefficiency that goes beyond the fact that meeting these

players is now less informative: it impacts all social meetings. These moderately connected

players are effectively responsible for injecting extra noise in the society. As it travels from

one searcher to another, this noise accumulates and amplifies through the structure of social

connections. We call this effect the noise-amplification externality.

We study whether this externality is fueled or dampened as the society becomes more con-

nected. The net effect of increasing connectivity ultimately arises from the conflict of two

opposing forces. A highly connected society provides more opportunities for players to learn

from others and aggregate information at a faster rate. But at the same time, it can tilt in-

centives away from producing information, thereby enlarging the pool of searchers and, thus,

increasing the noise-amplification externality. We model increased connectivity with a class

of stochastic transformations of the type-distribution. In particular, we focus on sequences

of stochastic transformations satisfying single-crossing property and a version of the mono-

tone likelihood ratio property. We show that the equilibrium quality of social information

is quasi-convex. This property implies that, along any sequence of increasingly connected

societies, the equilibrium quality of social information undergoes two phases. During the

first one, it declines because increased connectivity comes at the cost of amplifying these so-

cial distortions. In the second phase, increased diffusion ability overcomes noise, and social

encounters become more informative. What determines the relative magnitude of these two

phases is the communication technology.

To better understand these inefficiencies, we study how the planner allocates types into

learning activities to maximize welfare. We show that the socially optimal allocation can

diverge substantially from the equilibrium one. In particular, players with a higher con-

nectivity do not necessarily spend more time searching, a feature that is necessarily true in

equilibrium. Depending on the constraints the social planner faces, the socially optimal allo-

cation can differ from equilibrium in two distinct ways: reversal, a situation in which highly

connected players work, whereas lower types search, in stark contrast with equilibrium; or

time-switching, a situation in which a region of players is constantly switched back and forth

between work and search as a function of the actual information they carry. Both deviations

highlight how the planner’s allocation can differ from equilibrium in a qualitative sense.

These deviations are caused by the interplay of connectivity and frictions in communication.

When these frictions are severe, a searcher’s contribution to social information is curtailed.

Although she accumulates information at a high rate, her diffusion ability is limited. From a
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social perspective, she free-rides more than she can diffuse information. By forcing a highly

connected searcher to work, the planner trades-off her individual gains with the fact that

every signal she produces as a worker will be easier to find by those who search. This is

because her type determines both the rate at which she meets others and the rate at which

others meet her.

Finally, we apply our framework to study how resilient a society is to external manipulations

of public opinions and how this depends on the connectivity of the society. We imagine

altering the meeting technology in a way that consistently exposes a small group of players to

biased information.1 We evaluate the overall impact of this manipulation on the distribution

of beliefs in the society. To do so, we construct a measure of influence for players in our

society. It combines all the different forces that are at play in equilibrium. Our analysis shows

that searchers become more influential as the share of the population producing information

declines and connectivity increases. This result is line with the role of the amplification

mechanism described above. An important implication of our analysis is that that societies

that are very effective in aggregating and diffusing information also correspond to those

that are highly susceptible to manipulations. As the influence of each type increases in this

society –possibly due to the communication channel becoming more efficient or the society

becoming more connected– it becomes easier to shift public opinion by manipulating the

learning process for an increasingly small share of agents in the population.

The rest of the paper is structured as follows. Section 2 gives a comprehensive account of the

related literature. Our model is introduced in Section 3 and we discuss its main assumptions

in Section 3.4. We proceed by characterizing the equilibrium in Section 4 and derive our main

results in Section 5. Section 6 is dedicated to normative solutions and efficiency benchmarks.

In Section 7, we introduce our measure of influence and study the resilience of the society

to external manipulations. Finally, Section 8 provides a discussion of our results in relation

to possible extensions, while Section 9 concludes.

2. Related Literature

This paper is at the intersection of two principal strands of the learning literature. The

basic trade-off between learning-by-doing (creating information) and learning-from-others

1Recently, a number of controlled large-scale social media experiments have shown the power

of altering the news-feed in affecting users’ beliefs and behavior. This corresponds to tweaking the

probability that a given content will be shown to (in the language of our model, “will be found

by”) a given user. Aral (2012) study the impact of manipulation on the decision to vote, Muchnik

et al. (2013) study the likelihood of informational cascades and Bakshy et al. (2012) study product

adoption decisions.
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(free-riding) is focal in the literature on strategic experimentation. There, however, how effi-

ciently information is diffused is of no particular interest. In fact, the observable information

generated by players, either via their payoffs or their actions, is usually public and, there-

fore, instantaneously diffused to all other players. Information diffusion is, to the contrary,

the distinguishing feature of the literature on social networks, herding and word-of-mouth

learning. There, it is the problem of information production that is assumed away, as players

are usually endowed with a set of exogenously given private signals.

The fundamental trade-off between producing information and learning from others is a

classic feature of strategic experimentation problems, as in Bolton and Harris (1999), Keller

et al. (2005), Rosenberg et al. (2007), Bonatti and Hörner (2011), Valimaki and Murto

(2011) and many others. In bandit problems, players learn via costly experimentation or the

observation of other players’ experimentation. Pulling the safe arm effectively consists in

free-riding on the information produced by others. However, experimentation is public, as

these models do not accommodate heterogeneity in connections. Therefore, the problem of

diffusing information is not really an issue. Relative to bandit problems, we reduce players’

strategic interactions to their minimal components. In particular, we work with a continuum

of players in a stationary environment. Moreover, the absence of a “safe” allows us to abstract

from the classic experimentation-exploration trade-off, which is of interest in that literature.

This makes the player’s problem simple, allowing us to enrich social interactions in novel

directions that are of fundamental importance for our questions. Recently, Che and Horner

(2015) and Frick and Ishii (2016) have analyzed bandit-like environments with a continuum

of players to study optimal information design and technological adoption. In a spirit similar

to ours, Sadler (2015) studies a model of strategic experimentation on incomplete networks,

in which non-Bayesian players best respond to näıve expectations about their neighbors’

beliefs.

The first peculiar feature of our model is to introduce heterogeneity in players’ connectivity.

Empirical evidence shows how vastly different people are when it comes to how connected

they are to the rest of the society (Newman (2010)). Of course, this heterogeneity affects

players’ ability to learn from others as well as the influence they exert on others (Ballester

et al. (2006)). One of our motivations is to understand how the structure of social connections

affects equilibrium outcomes. From this point of view, we borrow from the social networks

literature (Jackson (2008) and Golub and Sadler (2016)). In particular, our paper somewhat

relates to the games studied by Bramoullé and Kranton (2007) and Bramoullé et al. (2014)

and to the questions in Acemoglu et al. (2010). We deviate from most of this literature as

we model connections probabilistically in the context of a search framework. In doing so,

our paper relates to Galeotti et al. (2010). We use a search model in which, players are

characterized by a type affecting the rate at which they meet other players. These meetings
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are random and their nature is a function of the type-distribution itself. In this way, we

capture the idea that more connected a player is, the easier it is to meet her. The idea of

learning from others by sampling opinions from the society is a feature that comes from the

word-of-mouth learning literature, e.g. Banerjee (1993), Ellison and Fudenberg (1995) and

Banerjee and Fudenberg (2004). In a different context, it is also a feature of Duffie et al.

(2009) and Duffie et al. (2014) and, to some extent, of Callander (2011). Caplin and Leahy

(1998) and Caplin and Leahy (2000) also use search tools to model learning in an economy

with a continuum of agents. Our paper differs substantially from these ones as we explicitly

account for heterogeneity in the rate at which players meet. Farboodi et al. (2016) have

independently developed a similar meeting technology to model this heterogeneity, although

they have applied it to a markedly distinct environment. Moreover, unlike these authors,

we are explicitly interested in the study of equilibrium outcomes as the underlying society

becomes increasingly connected. To this purpose, the tools we develop are orthogonal to

the literature above. Our main Theorem reduces to an integral aggregation of the single-

crossing property. This problem closely relates to a tradition in economics that studies

comparative statics under uncertainty. Seminal examples are Milgrom and Shannon (1994),

Athey (2001), Athey (2002) and, specifically, Quah and Strulovici (2012) from which our

definition of “regular” sequence is inspired.

A second peculiar feature of our model paper is to explicitly account for frictions in the

communication technology. The idea is that communications between players take place

through a communication channel with finite capacity that inevitably distorts the message.

This idea is common in the information theory literature, especially in computer science. In

economics, finite capacity channels have been used to model rational inattentive agents, Sims

(2003), Steiner et al. (2016) and Jung et al. (2016). We abstract away from the problem of

strategic information transmission that has been amply studied in the communication liter-

ature, see for example, Milgrom (1981), Grossman (1981), Jovanovic (1982), Crawford and

Sobel (1982), Okuno-Fujiwara et al. (1990) and more recently by Kamenica and Gentzkow

(2011). Frictions in communication are an implicit feature also in most of the herding litera-

ture, Banerjee (1992) and Bikhchandani et al. (1992), Smith and Sorensen (2000), Acemoglu

et al. (2011), but also Gale and Kariv (2003). In this paper, we create a flexible environ-

ment in which these communication frictions interact with changes in the social structure

of the underlying society. Ali (2016) contributes to the herding literature by studying social

learning when information can be endogenously produced by the society: a countable set

of myopic players act sequentially after gathering information from the observation of past

actions (learning from others) and from costly signals (production of information). In this

sense, our paper share a very similar motivation, although differ substantially in both the

question of interest and the methodology used.
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Finally, this paper relates to the literature on the informational efficiency of markets with

centralized or decentralized trading, Grossman and Stiglitz (1990) and Wolinsky (1990). This

paper also relates to some recent work done in growth theory. In particular, Perla and Tonetti

(2014) and Lucas and Moll (2014) study growth models in which firms, by search among other

firms, can “update” and improve their own technologies. Jovanovic (2015) studies a dynamic

learning problem in which an agent chooses between production or investment in information.

Fogli and Veldkamp (2014) analyze, both theoretically and empirically, the dual aspects of

diffusion: encouraging the spread of good versus bad behavior. In political science, Larson

and Lewis (2016) model an information diffusion process that accounts for the fact that

people may trust some of their contacts more than others. In such context, higher network

density potentially impedes the wide reach of information to diverse communities. Relatedly,

Grossman et al. (2014) study empirically how the access to information communication

technology affects who gets heard and what gets communicated to politicians.

3. Model

In this section, we introduce the model. We begin by describing players’ characteristics

and objectives, and the learning activities available to them. In Section 3.2, we define and

solve the players’ dynamic choice problem. In Section 3.3, we model information exchanges

and introduce the communication technology. We postpone the discussion of our model to

Section 3.4, in which we motivate our main assumptions.

3.1. Types and Meetings

Time runs continuously and uncertainty is characterized by a persistent and unknown state

of nature θ ∈ Θ := {−1, 1}. A continuum of Bayesian and forward looking players enter and

leave the economy at a fixed Poisson rate δ > 0. We index their age with t ≥ 0 and denote

τ(t) := δe−δt the exit distribution. Players discount the future at common rate r > 0 and,

when entering the game, have a common prior belief p0 := Pr(θ = 1).2 Each player is born

with a type x ∈ R+, distributed according to a density f with support X. Denote F the set

of all such densities. We refer to the distribution of types f ∈ F as a society.

Each player is endowed with a type-dependent search technology. In particular, a player’s

type describes how connected she is to the rest of the society, a measure of how easily she can

meet others and, potentially, learn from them. More specifically, a player’s type x denotes

2These two assumptions are not necessary for most of our results, but make the exposition more

straightforward.
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the rate at which meetings take place. The nature of these meetings is random and their

distribution is given by the conditional density function h(z) := zf(z)/
∫
X
z′f(z′)dz′, which

depends on the primitive f ∈ F . Notice that while a player’s type x determines the rate

at which she meets others, it does not affect the conditional distribution of these meetings.

Moreover, higher types are ceteris paribus also those that are more likely to be met by others.

Player’s flow (indirect) utility is given by u(p(x, t)) := max{p(x, t), 1− p(x, t)}, with p(x, t)

denoting the player’s posterior belief at age t.3 To learn about θ, each player continuously

chooses between two costless activities : working and searching. These activities provide

players with private information about the state θ. Signals that originate from the work

activity are exogenous as they do not depend on the activities chosen by others. They are also

independent of a player’s type, meaning that everyone has equal access to this technology.

When a player chooses to work for a dt-interval, she receives a signal πw, distributed normally

with mean ηwθdt and variance dt.4 These signals are conditionally independent across time

and players.

Signals originating from the search activity are our main equilibrium object. While searching,

type x meets other players at rate x. From each player she meets, she receives a signal, whose

nature will depend on the type of the player she met, her age, the activity she chose, her

particular experience etc. Yet, what matters for her decision to work or search in a dt-

interval of time is the information the player expects to receive. This can be represented as

a signal that aggregates the features listed above. We denote this instantaneous information

flow with πs(x) and posit that it is normally distributed with mean xηsθdt and variance

dt. Signal πs(x) depends on searcher’s type x only insofar as it scales the mean-to-variance

ratio ηs. This is consistent with our meeting technology: a player’s type only affects the

rate at which she meets others, not who she meets. Ultimately, the equilibrium object in

the information structure πs(x) is ηs. It captures the “per-meeting” expected quality of

social information, a measure of the informativeness of a random meeting in the society. In

a non-stationary environment, this variable evolves as the society learns about the state θ.

For the time being, however, we will focus on stationary environments, those in which ηs is

a stationary equilibrium object.5 In these cases, the aggregate social distribution of beliefs

is stationary, even if individual beliefs are not. Players learn as they grow older, but the fact

that they eventually leave the economy – being replaced with new players with prior belief

p0 – guarantees stationarity.

3We postpone to Section 3.4 the discussion and microfoundation of u(pt).
4We normalize the variance of signals to 1, letting ηw capture the mean-to-standard deviation

ratio. This normalization is without loss of generality with respect to the problem solved by each

player.
5In Section 8 and in Appendix C, we will lose our focus on stationary environments.
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Moments ηw and ηs, together with a player’s type x, fully characterize the information

structures associated with the two activities. In particular, these variables pin down how

valuable each activity is. How to optimally allocate time between these two turns out to

be particularly simple, for two reasons. First, by construction, πw is more informative (in a

Blackwell sense) than πs(x) if and only if ηw ≥ xηs. Second, each player has zero-mass and

therefore her choice does not affect equilibrium ηs. We formalize this intuition in the next

section.

3.2. Optimal Learning Activities

Players continuously allocate time between work and search to learn most effectively about

the uncertain state θ. Let p(x, t) be the Bayesian posterior beliefs of type x at age t and

v(p(x, t)) be the value of the player’s problem at that particular belief. Denote αt ∈ [0, 1]

the instantaneous probability that a player searches at age t. Her dynamic problem can be

expressed recursively as follows:

v(p(x, t)) = max
α(x,t)∈[0,1]

(r + δ)u(p(x, t))dt+ e−(r+δ)dtE
(
v
(
p(x, t+ dt)

) ∣∣∣ α(x, t)
)
, (1)

where the expectation is taken with respect to the future posterior beliefs p(x, t+ dt) given

the choice of αt. The choice of the activity only affects future information sets and therefore

does not enter the flow payoff. Moreover, we focus on a stationary equilibrium and, since

players are strategically small, their choice of the activity does not affect the variable ηs

either. Her objective boils down to the maximization of the variance of her posterior beliefs.

In Lemma A2, relegated to the Appendix, we show that the recursive equation above can

be written as

v(p(x, t)) = max
α(x,t)∈[0,1]

u
(
p(x, t)

)
+

2

r + δ
p(x, t)2

(
1− p(x, t)

)2
v′′
(
p(x, t)

)
Q
(
α(x, t)

)
.

In the equation above, the term Q(α(x, t)) :=
(
(1 − α(x, t))ηw

)2
+
(
α(x, t)xηs

)2
captures

how the choice of α(x, t) affects beliefs’ variance. In the next result, we establish that the

choice of the activity does not depend on current beliefs p(x, t), but just on x.

Lemma 1. Given ηw and ηs, there exists a unique threshold type x? = ηw
ηs
, such that all

types above x? search (α(x, t) = 1) and all types below x? work (α(x, t) = 0).

In a stationary environment, namely when ηs is time-independent, the result above implies

that players never switch between activities during their lives. More specifically, there is a

unique threshold-type x? such that a player searches if and only if she is more connected

than x?. In the following, we will refer to the map

ηs(x) =
ηw
x

(2)
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as the individual rationality condition (IR). Given any ηs, we call x? individually rational if

it satisfies Equation 2.

3.3. Information Exchanges and Communication Technology

When a searcher meets a type x, be it a worker or another searcher, a transfer of informa-

tion occurs from x to the searcher. The informativeness of this meeting depends on two

factors: how informed type x is and how efficiently she can communicate. Of course, a

player can never transfer more information than she possesses. Let Γ(x, t) denote the stock

of information a player of type x has gathered up to time t. From Lemma 1, we know that

players do not switch between activities. It is therefore particularly simple to model the

stochastic process Γ(x, t), which takes the form of a Brownian motion with an endogenous

drift-to-variance ratio. We have that:

Γ(x, t) :=

{
ηwtθ +B(t) ∼ N (ηwtθ, t) if x works,

ηsxtθ +B(t) ∼ N (ηsxtθ, t) if x searches,
(3)

where B(t) is the standard Weiner process. Intuitively, when Γ(x, t) is positive (resp. neg-

ative), the player has accumulated evidence in favor of hypothesis θ = 1 (resp. θ = −1).

A straightforward application of Bayes’ law shows that the stock of information Γ(x, t) and

the posterior belief p(x, t) are in a one-to-one relationship (Lemma A3). Therefore, observ-

ing the current state of Γ(x, t) is equivalent to observing player’s x posterior belief p(x, t).

Both contain information about θ. Observing a player’s posterior belief corresponds to a

situation in which all information she has ever collected in her life is be instantaneously

extracted. More realistically, imperfect communication technologies could introduce distor-

tions in the communications among players. In such case, a noisy version of Γ(x, t) will

be observed by the searcher. In the following, we will assume that players who gathered

their own information through work are (weakly) better suited at conveying this informa-

tion to others. We implement this idea in the following way. First, we normalize Γ(x, t) with

π(x, t) := t−
1
2 Γ(x, t), which consequently becomes normally distributed with some mean –

depending on time and activity – and unit variance.6 Second, the communication between

a searcher of type x and any other player happens through a communication channel with

possibly finite capacity.7 This imperfect technology accounts for potential distortions applied

to the input signal π(x, t). The output signal, denoted π̃(x, t), is a garbling of the input one.

Formally, we define a communication technology as follows:

6This normalization is without loss of generality: since both x and t are observable, and activities

are persistent, the normalized signal induces the same belief updating, which is ultimately what

matters for the equilibrium.
7Sims (2003) popularized the notion of a finite capacity channel in economics. See Steiner et al.

(2016) and Jung et al. (2016) for recent applications.
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Input Output

If x works π(x, t) ∼ N
(√

tθηw, 1
)

→ π̃(x, t) ∼ N
(√

tθηw, 1
)

If x searches π(x, t) ∼ N
(
x
√
tθηs, 1

)
 π̃(x, t) ∼ N

(
g(x
√
t)θηs, 1

)
Table 1: Communication Frictions

Definition 1. A communication technology is a map

g ∈ G := {g ∈ C(R+) | g non-decreasing and g(y) ≤ y}.

Let (G,≥) be the partially ordered set of communication technologies.8 When g′ ≥ g, we

write that g′ is more informative than g.

A communication technology g ∈ G satisfies two natural requirements: first, g is non-

decreasing, i.e. players with more information are weakly more informative; second, g(y) ≤ y,

i.e. no player can transfer more than what she gathered. Frictions in communication are

implemented as illustrated in Table 1. When g = idR+
,9 there are no communication frictions

and players can read each other’s beliefs. For any other g ∈ G, signals that are intermediated

by searchers depreciates; they are garbled by g. This introduces an inherent difference

between first-hand information, the one coming directly from the source, i.e. a worker, and

second-hand information, the one coming from a searcher, someone who has herself learned

indirectly from either a worker or another searcher. We postpone further discussions on the

communication technology to Section 3.4.

Upon meeting a player of type x at age t, a searcher receives a signal distributed according

to π̃(x, t). Yet, meetings are random. Therefore, in order to assess the value of the search

activity, a searcher needs to evaluate the information she can expect to receive – something

that, in turn, depends on ηs. This creates a consistency problem: in equilibrium the value

of ηs needs to be consistent with the beliefs of every other player in the society. More

specifically:

E(πs|ηs) = E
(∫

X

(∫ ∞
0

π̃(x, t|ηs) τ(t) dt
)
h(x)dx

)
. (4)

8A partially ordered set (Y,D) is a set Y endowed with some partial order D. We write

max(Y,D) and min(Y,D) to identify the maximum and the minimum elements of such poset

whenever exists.
9We denote idR+

the identity function on R+, that is idR+
(x) = x for all x ≥ 0.
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The condition in Equation 4 directly links the informativeness of the search activity ηs with

the expected “amount” of information communicated in a random meeting. We refer to

such condition as Bayes consistency and, in Section 4, it will play an important role in our

equilibrium concept. This condition ensures that the information a player expects to receive

from others is consistent with what others actually believe, under the assumption they are

Bayesian. In a stationary environment, Equation 4 boils down to a fixed-point problem. To

determine the behavior of a given player – which activity she will choose and, consequently,

how much information she will gather – we need to pin down ηs. However, ηs itself depends

on the amount of information that can be communicated by a type x at age t, which is given

by π̃(x, t), also depending on ηs.

3.4. Discussion of the Model

Before moving to the equilibrium definition and properties, it is useful to discuss our main

assumptions, their motivation and robustness.

The Meeting Technology. A fundamentally new feature in our model is the introduction of

heterogeneity in players’ connections. The basic assumption is that more connected players

meet others more easily. This assumption has an obvious implication: ceteris paribus, the

more connected a player is, the more likely it is to meet her. In this framework, the meeting

rate x only affects the rate at which meetings take place, not their nature. For this reason,

f ∈ F does not represent a generic social network.10 By reducing all heterogeneity in

the society to heterogeneity in the type x, we abstract from other potentially interesting

features that a generic network has, such as the heterogeneity in players’ neighborhoods,

homophily, etc. Yet, we capture an aspect of this heterogeneity that is of first order in

real-world networks, namely degree heterogeneity: different people have different “levels

of access” to the general society, because they have more or less connections. From this

perspective, f is a convenient way to introduce a fundamental level of heterogeneity in the

model without explicitly having to account for a full-scale network. This assumption makes

our model particularly tractable and it also allows us to study global and general shifts in the

distribution of connections f , rather than local and particular changes, such as the deletion

of one particular node or the other.

Information Exchanges and Communication Frictions. The second key component in our

analysis is the way in which information is exchanged from one player to another. We do

explicitly model the motives that lead players to share their information with others. The

problem of strategic information transmission has been amply studied in the literature and

10It is indeed a very particular type of network: an infinite, complete, weighted graph on X, with

weights proportional to the type of a node.

13



goes beyond the scope of this paper.11 Moreover, since in our model players have zero mass,

the strategic consequences of peer-to-peer information transmission are immaterial. From

an individual point of view, players are indifferent as their communication choices do not

affect aggregate equilibrium variables. The novelty of our approach is to introduce frictions

in the communication technology that transfers information from one player to the other.

Frictions only apply to information that is accumulated via the search activity. The idea

is that workers, having literally produced the information themselves, are better at convey-

ing it to others. Searchers, instead, having received information indirectly – from workers

or from other searchers – are not quite as effective as workers at reproducing it without

altering its content. This introduces a wedge between first-hand information, stemming di-

rectly from workers, and second-hand information, signals that have been intermediated by

searchers. This assumption makes the main tensions in our model particularly transparent

and straightforward. However, it can be relaxed. In Section 8, we discuss an extension of

our model in which the communication technology is frictional for all players, independent

of their activity. In Appendix B, we show that, when g ∈ G is concave, many of our results

extend to this more general case.12

Stationarity and Payoffs. Most of our analysis focuses on a stationary environment. In Sec-

tion 8, we discuss the dynamic version of our model. In such case, the equilibrium variable ηs

becomes a time-dependent equilibrium object. Consistently, players can switch from work to

search when the society has learned enough and the search activity has become sufficiently

attractive. In Appendix C, we show that dynamic equilibria, although difficult to charac-

terize, have information paths ηs(t) that necessarily converge to the stationary equilibrium

that will be introduced in the next section. This dynamic stability makes the stationary

equilibrium a natural benchmark to study, on top of being one that is very tractable from

an analytical point of view. Moreover, we associate with the stationary environment the

following interpretation; We think of players becoming aware of (or interested in) a given

issue θ, about which they have some prior information p0. At a random future time τ(t), a

player takes an irreversible action, a guess of θ, that will determine her material payoff. We

interpret the random time τ(t) at which the player has to cast her final guess as the time

at which issue θ becomes subjectively obsolete for the player. A new issue θ′ will become of

interest for her and, therefore, she leaves the game. Since the arrival of such date is random,

it is optimal for the player to continuously update her guess, as new information comes

along. The flow (indirect) utility u(pt) represents the value of this guessing problem, that is

11See for example Crawford and Sobel (1982), Grossman (1981), Milgrom (1981), Jovanovic

(1982) and, more recently, Kamenica and Gentzkow (2011).
12A concave g ∈ G captures a natural idea. Under a “finite capacity” communication channel, the

higher the number of signals that needs to be transferred, the harder it is to transfer an additional

one. See Section 8 for a more detailed discussion.
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u(pt) := maxbt∈ΘEpt
(
1(bt = θ)

)
= max{pt, 1− pt}.13 While we focus on stationary equilib-

ria mostly for analytical tractability, there are many environments in which it is a natural

solution concept. Consider a population in which each player sequentially faces different

issues about which she has to form an opinion. When a player decides to learn about this

issue from other players, she acquires information mostly from those that are also currently

interested in that specific issue. This is natural in social networks that are issue-specific.

The same is true even in a general-interest social network, such as Facebook or Twitter, as

long as active players only post information about the issues they are currently interested in,

while older posts become obsolete or harder to access. From this perspective, a stationary

solution concept can be interpreted as applying to those environments in which the share of

the population interested in a specific issue is evolving over time and yet its size is relatively

stable.

4. Equilibrium

In this section, we define and establish the existence and uniqueness of stationary equilibria

in this game. We show how to reduce the equilibrium to a relatively simple fixed-point

map, thus condensing all the complexity introduced in the previous sections into one simple

equation, from which most of our results will later be derived.

Definition 2. A Stationary Equilibrium is a pair (x?, ηs), composed by a threshold type

x? and a social information quality ηs, such that:

(IR) Given ηs, x
? is individually rational. That is, type x searches if and only if x ≥ x?.

(BC) Given x?, ηs is Bayes consistent. That is, ηs is a fixed-point of Equation 4.

In the definition above, the first requirement is that no player, at any point in her life,

wants to deviate from the activity she is engaged in. For this to be true, type x? has to

be indifferent between work and search. All types with higher connectivity will search and,

vice versa, all types with lower connectivity will work. The second requirement, instead,

can be seen as a particular kind of market clearing for information. As in a production

economy, players cannot “consume” more than the economy is producing. Similarly, Bayes

consistency requires that information shall not be created from nowhere or erased with no

13The results we present in this paper do not hinge on the particular choice of u(pt). Any

flow utility u generating a convex value function v will do. Convexity implies that players are

information lovers. This particular choice of u is motivated by the fact that it provides us with a

simple analytical solution for the second-order ODE that describes the player’s problem.
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reason. Information must be produced and diffused according to the “rules of the game”

that we have outlined in the Section 3.

The fixed point implicit in Bayes consistency has a unique solution (Lemma A4), which is

given by the following expression:

ηs = ηw
cH(x)

1−
∫
x
g̃(z)h(z)dz

, (5)

where g̃(z) := Eτ
(
g(z
√
t)
)

and c := Eτ (
√
t).14 The value of g̃(z) represents type z’s life-long

expected contribution to ηs, filtered through the communication technology g. Similarly, c

is the expected contribution to ηs of a worker. To rule out explosive dynamics, we need

to guarantee ηs is a positive real number. A sufficient condition is given by the following

assumption.

Assumption 1. We assume f ∈ F satisfies Eh(x)c ≤ 1.

Assumption 1 imposes restrictions on how thick the right tail of f is and on how long players

are expected to remain in the game.15 If this condition fails to apply, the society is able to

multiply information unboundedly, precluding the possibility for a stationary environment.

We will maintain Assumption 1 throughout the paper. In equilibrium, according to Defini-

tion 2, both individual rationality and Bayes consistency (Equations 2 and 5 respectively)

are satisfied simultaneously. This provides us with a single fixed-point equation that fully

characterizes the equilibrium:

x =
1

c
+

∫
x

m(z)h(z)dz, (6)

where we denoted m(z) := 1
c

(
cx − g̃(z)

)
. The following result establishes existence and

uniqueness of our stationary equilibrium. Figure 1 provides a graphical representation of the

interactions between individual rationality and Bayes consistency.

Proposition 1. Fix a society f ∈ F and a communication technology g ∈ G. A stationary

equilibrium exists and is unique.

In equilibrium, we observe rich interactions among types, activities and information. From

Figure 1, the equilibrium features two important thresholds in players’ type. The first one,

x?, we have already encountered. It marks the type above which it is individually optimal to

search. The latter instead, x̂, will play a crucial role in the next section. This threshold marks

14In the following, we use notation Eτ (q(t)) :=
∫
R+

q(t)τ(t)dt and Ef (q′(x)) :=
∫
X q
′(x)f(x)dx.

Moreover, we write H(x) :=
∫ x

0 h(z)dz.
15Equivalently, by the definition of h, the requirement in Assumption 1 can be expressed as

cEf (x2) ≤ Ef (x).
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Figure 1: A graphical representation of the stationary equilibrium.

the type above which is socially optimal to search. Work and search are neither complements

nor substitutes of each other. For example, when few players work, there is little information

injected in the society and, therefore, little information to be searched for. The search activity

becomes less attractive, especially for types whose connectivity is not particularly high. This

creates incentives for these players to switch to work, therefore rebalancing the inflow of

information. This tension stresses how work and search can be seen as substitutes. However,

this tension does not apply uniformly across the population. Generically, the quality of

social information ηs is non-monotone in the threshold type x (Figure 1). Past a critical

value x̂, at which social information quality is maximal, ηs starts declining as the working

population becomes larger. This seemingly technical observation has the power to uncover

the unique role that some searchers play in equilibrium. While searchers do not create “new”

information, they nevertheless (i) aggregate information produced by others and (ii) enable

it to be diffused to different parts of the society. Searchers transform what is inherently

a private good – information produced by a worker for her own self – into a public good,

information that everybody else can access more easily. Due to their higher connectivity,

searchers meet (and are met by) others relatively more frequently. Therefore, they aggregate

information better and, modulo the distortions introduced by the communication channel,

make it more salient for others. For highly connected types, choosing the search activity

could not only be individually optimal, but also beneficial from a social point of view. When

nobody searches, information is scattered around the society in private “goods” that are for

the sole use of those who have produced them. Searchers bring together these “goods” and

make them more accessible to the rest of the society. By doing so, they can increase the

value of search and, in principle, the welfare of the society. And yet, the now higher value

of search can attract workers away from their activity, thus possibly reducing the value of

search. The unique balance among these rich interactions is a feature of the equilibrium of

this game, which we analyze in the next section.
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5. Results

Our model is characterized by two primitives: the distribution of types f ∈ F , describing

how connected the society is, and the communication technology g ∈ G, describing potential

frictions in searcher-to-searcher communications. In this section, we study how g (Sections

5.1 and 5.2) and f (Section 5.3) affect the equilibrium of this game and how these two

interact with each other.

5.1. Equilibrium and the Communication Technology

We start by uncovering the equilibrium role of the communication technology. In Definition

1, we have introduced a natural order on G: g′ is more informative than g if g′ ≥ g. Every

meeting is, ceteris paribus, less informative (in a Blackwell sense) under g′ than g. The

partially ordered set (G,≥) has two interesting extrema: max(G,≥) = idR+
and min(G,≥

) = 0. When g = idR+
, players can observe each other’s posterior beliefs upon meeting.

When g = 0, second-hand information is fully depreciated: searchers serve no social role and

the strategic interactions reduce to the free-riding of the information created by workers.

Proposition 2. Let g, g′ ∈ G be such that g′ is more informative than g. Then x?(g′) < x?(g)

and ηs(g
′) > ηs(g). That is, equilibrium information quality ηs increases even if the adjusted

mass of workers H(x?) shrinks.

As the communication technology improves, we observe players shifting away from work

towards search. This effect is intuitive. A better communication technology implies that,

ceteris paribus, a player is able to extract more information from any given meeting. This

implies that the indifferent type x?(g) could strictly prefer to search under g′. This leads to a

decrease in x? and, therefore, in H(x?), the mass of workers adjusted by their connectivity.16

However, even though information production is reduced, the equilibrium information quality

increases because information gets aggregated and diffused with higher efficiency under the

new communication technology. It is no surprise that improvements in the communication

technology are unambiguously beneficial for the society. In fact, not only ηs increases in

equilibrium, but it is also the case that ηs(x) increases at any x ∈ X, as depicted in Figure

2. This implies that, under the superior communication technology, any level of ηs can

be achieved with a strictly smaller set of workers. In the next proposition, we will show

what happens in the limit case when g is maximally informative, namely when players can

16The word adjusted, here, refers to the use of the cumulative distribution H instead of F . This

controls for the connectivity of workers. For example, type x = 0, even if she is a worker, does not

contribute to ηs as she is never met by anyone.
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Figure 2: Equilibrium and Communication Technology

observe each other’s posteriors. There, x? = x̂ and therefore, individual and social objectives

coincide. Under such g, players can effectively access each other’s posterior beliefs with no

friction and learn instantaneously all the information a player has ever collected in her life.

This is a noiseless society in which no signal is ever lost.

Proposition 3 (Observing Posteriors Beliefs). The equilibrium threshold x? maximizes the

Bayes consistency map ηs(x) if and only if g is maximally informative.

Proposition 3 shows that, whenever frictions compromise players’ ability to communicate, the

society fails to allocate learning activities as to maximize the quality of social information

ηs. Specifically, under any frictional g, there is a set [x?, x̂) of players with intermediate

connectivities who choose to search in equilibrium, without internalizing the fact that they

would have better contributed to ηs had they worked. A frictional communication technology

introduces a wedge between a player’s own incentives and her social role in the determination

of ηs. When searching, a player aggregates information at a rate proportional to her type x.

However, her ability to diffuse information is depressed due to the friction imposed by the

communication technology g. While players’ individual incentives are entirely determined

by the former, their social role is also linked to the latter. A discrepancy between the

two creates a region characterized by players who are better than workers at aggregating

information, but worse than them at its diffusion. Of course, this situation has implications

for the efficiency of these equilibria and, more specifically, on how a social planner would

redistribute players into activities, as we will see in Section 6. For the rest of this section,

however, we focus on the effects that this region produces on equilibrium outcomes.
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5.2. Searching and the Amplification of Noise

The previous section highlighted the crucial role of communication frictions in creating a

region in the type-space X populated by searchers whose individual decisions are detrimental

to ηs, the quality of social information. Now, we single out the implications of such decisions

for the equilibrium. In particular, we show how these distortions amplify due to the activity

of other searchers.

When the communication technology g ∈ G is frictional, Proposition 3 implies that ηs(x)

is strictly increasing for all x ∈ [x?, x̂) (Figure 1). Rearranging the definition of ηs from

Equation 5, we can write

dηs(x)

dx
> 0 ⇒ 1−

∫
x

g̃(z)h(z)dz > g̃(x)H(x) ⇒ g̃(x)ηs < cηw for all x ∈ [x?, x̂).

Fix any type x ∈ X. One can think of cηw (resp. g̃(x)ηs) as the extent to which type

x is expected to contribute to ηs in her lifetime, if she works (resp. searches). Type x’s

contribution when she works is exogenous, it does not depend on her type and on frictions.

It is only a function of τ , the age-distribution. On the contrary, type x’s contribution when

she searches is endogenous, it is type-dependent and affected by frictions. When x ∈ [x?, x̂),

type x’s decision to search effectively reduces ηs. Equivalently, she introduces extra noise

into the society. When someone meets such a player, the signal she receives is noisier than

it should have been. However, the distortions for which type x is responsible go well beyond

the fact that meeting such type is now less informative. The extra noise that type x, with

her decision to search, seeds in the society is then collected by all searchers who meet her.

Therefore, it spreads around the society and becomes part of everyone’s information set.

In this sense, a problem that was created locally, that is, in the region [x?, x̂), becomes a

global phenomenon affecting all searchers. This noise-amplification mechanism reduces the

informativeness of all social meetings, not just those involving players from the compromised

region.

Next, we formalize the idea of the amplification mechanism by computing a relative measure

of “social information elasticity.” To begin, fix a type x ∈ X and an activity, w or s. We

compute the elasticity of ηs with respect to a marginal increase in type x’s diffusion abilities:

εw(x) :=
dηs/dcx
ηs/cx

and εs(x) :=
dηs/dg̃(x)

ηs/g̃(x)
.

These elasticities measure how much the equilibrium quality of social information ηs is

affected by type x. We model this experiment by marginally increasing either cx or g̃(x),

according to the chosen activity. This marginal increase affects type x specifically.17 The

17We abused notation by writing cx, instead of c, to stress the fact that we are increasing c

uniquely for type x.
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Figure 3: The amplification effect.

relative difference between these elasticities, namely εs(x)− εw(x), is a measure of the total

equilibrium impact that type x produces on ηs when she decides to deviate from work to

search.

Proposition 4. The work-to-search relative elasticity can be decomposed as:

εs(x)− εw(x) =
(
g̃(x)ηs − cηw︸ ︷︷ ︸

social
contribution

)
x

H(x?)︸ ︷︷ ︸
amplification

effect

κ(x), (7)

where κ(x) =
f(x)

cηwEf (z)
only depends on primitives.

Proposition 4 provides a decomposition of the negative externality that players in the com-

promised region [x?, x̂) are exerting on ηs. For these players, we have just established that

g̃(x)ηs < cηw. The first term in Equation 7 represents the extra noise that their activity

seeds in the system. This wedge, we said, is entirely due to frictions implied by g. Yet,

these distortions are not meant to stay local. They are amplified by the rest of the searching

population, as captured by the second term in Equation 7. This term has two factors:

Centrality. The amplification effect is increasing in x. The value of x measures how attrac-

tive, or “central,” this player is. The higher x, the higher the rate at which other searchers

will meet her, the stronger the social distortions that her individual decision creates.

Expected Path Length. The amplification effect is decreasing in H(x?). In our model, all

signals originate from some workers. These signals are then spread around the society by

the activity of searchers. The term 1
H(x?)

captures exactly the expected number of searchers

each signal encounters before reaching a player x ∈ X. To see this, consider Figure 3. Player

x, a searcher, meets another searcher called s ∈ {s1, s2, s3}. Although x can observes s’s

type and age, she cannot reconstruct the path followed by the information she is about to

relay. However, for each signal player s has collected, player x can speculate on the path it

traveled. For example, if s = s1, the signal that s is carrying comes directly from a worker

w. Such path has length k = 1. This event has probability H(x?), namely the probability

player s meets a worker. If s = s2, instead, the signal went through another searcher before

reaching s2. This path has length k = 2 and probability H(x?)
(
1 − H(x?)

)
. Player x can
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compute the probability of each k and, thus, the expected length of such paths:

E
(

path of length k
∣∣∣ x?) =

∞∑
k=1

kH(x?)
(
1−H(x?)

)k−1
=

1

H(x?)

The smaller H(x?), the higher the expected path length that each signal travels in this

society, the higher the probability the signal ever went through the compromised region

[x?, x̂).18

The combination of the strength of attraction of type x and the amplification power of the

society determine the overall impact of the negative externality that type x induces on the

whole society.

5.3. The Pitfalls of Increasingly Connected Societies

We now turn the analysis to the effects of the social structure f on equilibrium outcomes.

More precisely, we are interested in understanding how the equilibrium and, in particular,

the ability to produce and diffuse information, is affected when the society becomes more

connected. Our discussion in the previous sections shows how a frictional communication

technology is bound to introduce a wedge between an agent’s individual incentives and her

social role. This introduces distortions that are spread and amplified throughout the society

by the activity of searchers. Intuitively, this may suggest that increasing the connectivity

of a society can have ambiguous effects on the quality of social information ηs. We begin

this Section by making this intuition explicit. We show how different changes in the social

structure f can systematically produce opposite effects on the quality of social information.

This illustrates how the ambiguity mentioned above is an endemic feature of this model.

In our Theorem 1, we put forward a positive resolution to this ambiguity. We show that,

by organizing the changes in the social structure in a coherent and reasonable manner, the

tension between negative and positive effects gains some order, providing a clean and general

illustration of the equilibrium effects of increasing social connectivity.

To begin, let us introduce a partial orderD on F that captures the idea of “more connected.”

Since f is a probability density function, it seems natural to use stochastic orderings to track

the changes in the distribution f . The use of stochastic ordering is particularly convenient

18This is reminiscent of what, in the United States, is sometimes referred to as the telephone

game effect. The telephone game consists of having a group of people arranged in a line with a

message being whispered by one player to her immediate neighbor, until it reaches the last player,

who then announces the message to the group. Errors typically accumulate and amplify in the

re-tellings, so that the statement announced by the last player differs significantly from the one

uttered by the first. A conceptually similar force is at play in our model.
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in our model because it allows us to abstract from local changes to the social structure – like

adding a connection between two particular players – and rather focus on global ones. We

capture the idea of f ′ being more connected than f via first-order stochastic dominance.19

Definition 3. Let (F ,D) be the poset of societies endowed with the first order stochastic

order. We say that f ′ is more connected than f whenever f ′ D f .

Now consider any society f ∈ F with a frictional communication technology g ∈ G. By

Proposition 3, we know that x? < x̂. Players whose type falls between x? and x̂ are contribut-

ing negatively to the equilibrium quality of information society. They find it individually

optimal to be searcher, but due to frictions in the communication technology, they end up

relaying less information than they would if they had worked. In the next Observation, we

construct two examples of first-order stochastic shifts that, on the one hand, exacerbate the

influence of these trouble-types and, on the other, alleviate it. Denote ηs(f) the equilibrium

quality of social information under a given society f .

Observation 1. Fix a society f ∈ F and any frictional communication technology g ∈ G.

There exists two societies f ′, f ′′ ∈ F such that f ′, f ′′D f such that ηs(f
′) < ηs(f) < ηs(f

′′).

Increasing connectivity can produce opposite effects on the quality of social information

ηs, according to which types have increased their social influence. The way examples in

Observation 1 are constructed is particularly instructive on the more general tensions that

characterize the transitions from one society to a more connected one. To illustrate this

clearly, fix f and let (x?, ηs) be the respective stationary equilibrium. When the communi-

cation technology g ∈ G is frictional, we know from the previous section that ηwc > ηsg̃(x)

for all x ∈ [x?, x̂) and ηwc < ηsg̃(x) for all x ∈ (x̂,∞). It is useful to consider the following

decomposition of ηs (see Equation A.2):

ηs = ηwc+

∫ x̂

x?

(
ηsg̃(z)− ηwc

)︸ ︷︷ ︸
negative

h(z)dz +

∫ ∞
x̂

(
ηsg̃(z)− ηwc

)︸ ︷︷ ︸
positive

h(z)dz

From a social perspective, players in x ∈ [x?, x̂) create a negative externality on the equilib-

rium allocation. Searchers in this region could have contributed to ηs more effectively if they

had worked. The effects on ηs of increasing connectivity crucially depend on which types

see their relative “weight” increased, whether it is [x?, x̂) or (x̂,∞). This provides intuition

on how the examples in Observation 1 can be constructed. If f increases in a first-order

stochastic sense so does h. If the implied change is such that under the new conditional

density h′, mass has been shifted from [0, x?] to [x?, x̂), the equilibrium adjustment of ηs will

19Recall that f ′ first-order stochastically dominates f if F ′(x) ≤ F (x), where F ′ and F are the

respective cumulative functions.
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be negative. Vice versa, if mass has been shifted from [0, x?] to [x̂,∞), bypassing the region

[x?, x̂), the equilibrium adjustment of ηs will be positive.20

This discussion highlights how the potential negative effects associated with increased con-

nectivity are closely related to the frictions in the communication channel. As shown in

Proposition 3, both x? and x̂ are changing as the communication channel becomes more

efficient and, in particular, one converges to the other, therefore making the region [x?, x̂)

increasingly small. We summarize the discussion above in the next result.

Proposition 5. Fix a society f ∈ F and a communication technology g ∈ G. The following

are equivalent:

(i) ηs(f
′) > ηs(f) for all f ′ ∈ F such that f ′ D f .

(ii) g ∈ G is maximally informative.

Paraphrasing, the quality of social information unambiguously improves irrespectively of the

shift if and only if players can observe each other’s posteriors. In all other cases, that is when

frictions are present, there always exists a more connected society in which ηs has decreased.

Also note that a decrease in ηs does not directly imply a decline in social welfare. Social

welfare is determined by the interaction between the new quality of social information ηs(f
′)

and the new distribution f ′. When ηs(f
′) decreases, the present discounted expected utility

of any given type x decreases too. Nonetheless, since it is always the case that higher types

are better off, it is possible that the changes in f ′ overturn the negative welfare effect. It is

important to emphasize that an increase in welfare is never guaranteed whenever there are

frictions in the communication technology. Particularly, it is always possible to construct

examples where a decrease in ηs is accompanied by a decline in social welfare.

The result of Proposition 5 hinges on manipulating the distribution of connectivities in

specific ways, while respecting the stochastic order D. The ambiguous effects on ηs are

induced by the fact that the set of first-order stochastic shifts are too general and poorly

structured. Realistically, connectivity increases in ways that are more regular. Moreover,

if f belongs to a known parametric family of distributions, it is unclear whether one can

replicate the manipulations of Observation 1. For these reasons, we now introduce more

structure to our problem. Specifically, we define a natural class of stochastic shifts that has

the merit of introducing order in the way the negative and positive components highlighted

in Observation 1 affect social information. A natural requirement to impose, for example, is

the following: if a type x becomes less prevalent under f ′ than f , the same should hold true

20Formally, this shows that ηs(f
′, x?(f)) < ηs(f, x

?(f)) < ηs(f
′′, x?(f)). However, since

the equation that defines individual rationality is strictly decreasing in x, this will imply that

ηs(f
′, x?(f ′)) < ηs(f, x

?(f)) < ηs(f
′′, x?(f ′′)), as we wished to show.
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for all other less connected types z < x. This regularity requirement is not guaranteed under

D. Since the structure of connectivity in the society influences the equilibrium only through

the meeting technology h, we directly put structure on h.21 In the following definition, let

N := {1, 2, . . . , n̄} be an index set with n̄ ≤ ∞.

Definition 4. A sequence (hn)n∈N ⊂ H is increasing if, for all n < n̄, hn∆ := hn+1 − hn

has the single crossing property.22 The sequence is regular if, whenever positive, hn+1
∆ /hn∆

is non-decreasing in z.

A sequence is increasing if concentration of connectivity moves from low types to high types

in a monotone way. For example, if a player with connectivity x becomes more prevalent in

the new society hn relative to the old one hn−1, all types x′ with connectivity higher than

x become weakly more prevalent as well. Analogously, if type x is less prevalent, it must be

that all lower types are less prevalent as well.

Regularity of a sequence, instead, imposes a condition on how h increases along the se-

quence. The condition closely resembles the Monotone Likelihood Ratio, but applies to

the transformations of h, not to h directly.23 One natural implication of this property is

that, for n′′ > n′ > n, letting z̄ and z being respectively defined as hn
′′
(z̄) = hn

′
(z̄) and

hn
′
(z) = hn(z), we have z̄ ≥ z, something that is not guaranteed by having an increasing

sequence alone. When this is not the case, i.e. when z̄ < z, all types z ∈ [z̄, z] would be less

prevalent in hn′ relative to hn, but more prevalent in hn′′ relative to hn′ . Definition 4 rules

out these anomalies by imposing a form of regularity along the sequence. An alternative

way to interpret the condition is to focus on a specific type x and see how hn(x) changes

along the sequence with n. Regularity guarantees that the sequence can be divided into at

most two parts, the first part where hn(x) is increasing and then the subsequent part where

it is decreasing.

Theorem 1. Fix a regular sequence (hn)n∈N ⊂ H of increasingly connected societies. Let

(ηns )n∈N be the corresponding sequence of equilibrium social information qualities. The se-

quence (ηns )n∈N is quasi-convex in n.

Formally, ηs(h) is quasi-convex along any increasing and regular sequence. That is, the

equilibrium evolution of the quality of social information ηs has two distinct phases. In the

21One can always consider the meeting technology h, instead of the distribution of connectivity

f , as the primitive of our model. Starting with f is more natural for introducing the model.
22A function q : X → R has the single crossing property if q(x) ≥(>) 0 implies q(x′) ≥(>) 0 for

all x′ > x.
23This condition is a version of the Monotone Signed Ratio property introduced by Quah and

Strulovici (2012). It is a regularity condition necessary for successfully aggregating the single

crossing property.
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Figure 4: Social information quality as the society becomes increasingly connected.

first one, ηs decreases and the quality of social information deteriorates. In this phase, the

increase in connectivity comes at the cost of amplifying the negative social role that the new

searchers are exerting. Due to their increased connectivity, these players are more attracted

to search. Yet, they don’t internalize the social cost that their choice imposes on the rest

of the society. In the second phase, ηs starts increasing. As the society becomes more

connected, so do highly connected types. At some point the increased ability of diffusing

information overcomes the negative impact of the additional noise that the marginal searchers

are introducing. What determines the relative importance of these two phases is, once again,

the communication technology g and, in particular, how severe communication frictions are.

To pair this result with Proposition 5, when g is maximally efficient, the decreasing phase

disappears along any increasing and regular sequence.

Figure 4 illustrates the result graphically. Theorem 1 sheds light on the relationship between

how connected a society is and the quality of the information that it is able to produce

and diffuse in equilibrium. Our result arises from the clash between two opposing forces.

Increased connectivity improves the speed at which information is aggregated and diffused

in a society. This contributes positively to the overall information quality. This is reflected

in the fact that searchers, conditional on meeting another searcher, always prefer to meet a

more connected type rather than a less connected one. However, this comparative static is

only true conditional on meeting another searcher. When there are communication frictions,

a searcher could be better off meeting a worker than a poorly connected searcher: although

the latter is more connected than the worker, she is not connected enough to overcome
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such frictions. In this case, although the searcher is more informed than the worker, she is

not quite as efficient at transferring her information. Moreover, increased connectivity also

provides incentives for some players to quit their working activity, and to switch to search.

This effect decreases the size of the working population, and thus the amount of “original”

information that is injected into the system. The now larger searching population propagates

noise at a higher magnitude, because the average path length connecting the signal fetched

by a worker to its “final” user is now longer and thus signals are garbled more often.

We conclude this section with the analysis of the two extreme cases of no frictions and max-

imal frictions. In the first case, our model captures interactions in which players can observe

each other’s posteriors. In the second case, our model converges to a pure exploitation prob-

lem. Searchers benefit from their higher connectivity to learn from workers more effectively.

However, they serve no social role as the information they collect cannot be re-used by any-

one else. Consistently, in these two extreme cases, we obtain two opposite and monotonic

results.

Corollary 1. Fix a regular sequence (hn)n∈N ⊂ H of increasingly connected societies. The

equilibrium quality of social information ηs is monotonically increasing if g = max(G,≥)

and monotonically decreasing if g = min(G,≥).

6. Normative Solutions

In this section, we analyze the efficiency of the equilibrium characterized in Section 5. In

particular, we ask how should activities be allocated to maximize social welfare. We consider

two distinct definitions of efficiency and conclude that, irrespective of the definition, equilib-

rium allocations are inefficient for almost all g ∈ G. More interestingly, due to the richness

of our type-space, the equilibrium allocation vs the optimal one may not just diverge at a

quantitative level, but also at qualitative one. The first planner we consider allocates players

into activities as a function of their type and maximizes the ex ante welfare of a generation

of newborns. We show that this planner can find it optimal to entirely reverse the order

of the society, by allocating lower types to search and higher types to work (non-monotone

allocations). The second planner, instead, maximizes the ad interim welfare of the society

by optimally allocating players into activities as a function of both their type and the infor-

mation they have accumulated up to a given point in time. We show that in the optimal

allocation a non-empty group of players is constantly swapped between activities, depending

on the amount of information they have acquired.
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6.1. The Optimal Time-Independent Allocation of Labor

Let’s suppose the planner allocates players into activities at the beginning of their lives to

maximize the present discounted value of a generation of newborn players. Formally, the

planner chooses an allocation function α ∈ A := {α : X → [0, 1]}. The planner is not bound

to respect individual rationality, but it still needs to abide to Bayes consistency. In fact, the

planner cannot affect how meetings take place, how information is collected, exchanged, and

possibly garbled due to communication frictions. However, in this case, Bayes consistency

can take a more general form:

ηs(α) := ηw
c
∫
X

(1− α(x))h(x)dz

1−
∫
X
α(x)g̃(x)h(x)dz

. (8)

The consistency condition above differs from Equation 5 as the social planner is not bound

to respect individual rationality and therefore she can choose allocations that are no longer

characterized by a unique threshold-type.24 The planner’s problem can be expressed in the

following way.

W SP = max
α∈A

∫
X

((
1− α(x)

)
vw(ηw) + α(x)vs(x, ηs)

)
f(x)dzdt,

sub to ηs = ηs(α) as in Equation 8.

(9)

In Lemma A8, we show that the planner’s trade-off relative to the allocation of type x can

be described as follows:

vs(x, ηs)− vw(ηw)︸ ︷︷ ︸
net individual gain

≥ x
(
ηwc− ηsg̃(x)

)
K︸ ︷︷ ︸

net social loss

, (10)

where K is a positive constant independent of x. The left-hand side in the inequality above

represents the individual gain of allocating type x to search rather than work. The right-hand

side, instead, represents the marginal social loss resulting from a similar decision. If type x

searches, throughout her life she will contribute to ηs at rate xηsg̃(x)K. The term x captures

the fact that, the higher the type x, the more frequently she is met by others, and therefore,

the bigger her contribution to ηs is, irrespective of her activity. Term g̃(x), we have already

encountered in Section 5: it captures the life-long expected contribution to ηs – filtered

through the communication technology g – of a type x who searches. A similar intuition can

be given to xηwcK when type x works.25 We will say that the equilibrium allocation, which

is fully characterized by the threshold x?, is efficient if it cannot be improved upon by any

α ∈ A in terms of ex ante welfare.

24Specifically, Equation 8 reduces to Equation 5 if there exists some threshold type x? ∈ X such

that α(x) ∈ {0, 1}, with α(x) = 1 if and only if x ≥ x?.
25Recall that c := Eτ (

√
t).
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Figure 5: Planner’s allocation for different g ∈ G

Proposition 6 (ex ante efficiency). The equilibrium allocation is (ex ante) socially efficient

if and only if the communication technology is maximally informative, i.e. g = max(G,≥).

This means that generically – i.e. for almost all g ∈ G and, in particular, whenever there are

frictions – the equilibrium allocation is inefficient. The result in Proposition 6 demonstrates

that, whenever there are frictions in the communication technology, the equilibrium ineffi-

ciently supplies the public good produced by this economy, namely information. This result

is in line with the literature on the competitive provision of public goods. From this litera-

ture we know that, when free-riding is at play, as it is in our case, the equilibrium usually

underprovides the public good.26 And yet, our model produces outcomes that go beyond the

simple quantitative deviation from the social optimum. When the communication frictions

are particularly severe, the equilibrium allocation is inefficient also from a qualitative point

of view: the social planner finds it optimal to actually reverse the equilibrium allocation. For

example, the planner can allocate intermediate types to search and higher types to work, in

stark contrast with the equilibrium allocation (see Figure 5).

Corollary 2. The optimal allocation can fail to have a monotone threshold type structure.

The intuition is the following. Consider a highly connected type x such that cηw > g̃(x)ηs.

This situation is bound to happen when g is concave. In such a case, this player is contribut-

ing less than she could to the total amount of information in the society. However, since the

player is highly connected, she will be met extremely often by others in the society. This

effect is captured by the multiplicative term x appearing on the right hand side of Equation

10. Therefore, the negative social contribution of player x is amplified by the fact that others

meets her very frequently (x is high). For this reason, the marginal social loss she generates

by searching can offset her individual gain and the planner would rather have her work.
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6.2. Optimal Time-Dependent Allocation of Labor

In this section, we consider a more demanding definition of a planner. Not only can she

allocate people into activities based on their type, but she can also condition based on which

information they have at any given point in their lives. Formally, the planner selects an

allocation function α ∈ A′ :=
{
α : X ×R→ [0, 1]

}
, a map that is adapted to the filtration

it induces. The number α(x, t) denotes the instantaneous probability that type x will be

assigned to search when she is of age t. By the choice of α, the planner decides what players

do as a function of their type and conditional on every possible history they could experience.

The planner maximizes total welfare subject to Bayes consistency:

ηs(α) := ηw

∫
X×R+

(
1− β(z, t)

)√
th(z)τ(t)dzdt

1−
∫
X×R+

g(β(z)z
√
t)h(z)τ(t)dzdt

. (11)

where β(t) :=
∫ t

0
α(t)dt = 1

t

∫ t
0
β(t)dt directly derives from α. The value of β(t) ∈ [0, 1]

captures the proportion of time player x spent on the search activity until age t. The

planner’s problem can be expressed in the following way:

W SP = max
α∈A′

E
(∫

X

∫
R+

u(p(x, t)) τ(t)dt f(z)dz
∣∣∣ α),

sub to ηs = ηs(α) as in Equation 11.

(12)

To begin, notice that the welfare levels that the planner can achieve under A, the feasible

allocations from the previous section, are also achievable under A′. Indeed, these allocations

depend, not only on type, but also on time. This suggests that the only if part of Proposition

6 extends immediately to this case as well. In the next result, we show that this is also the

case for the if part.

Corollary 3 (ad interim efficiency). The equilibrium allocation is (ad interim) socially

efficient if and only if the communication technology is maximally informative, i.e. g =

max(G,≥).

This result stresses once again how special the extreme case of g = max(G,≥) is. Similar to

the previous section, when there are communication frictions the equilibrium allocation can

be qualitatively different from the socially optimal one. The planner would like to modify

the equilibrium allocation in two different dimensions: types and time.

Corollary 4 (Characterization). There exist thresholds 0 < x1 ≤ x2 ≤ ∞ such that, in the

planner’s solution, for x ∈ X,
26This is also the case in the strategic experimentation literature.
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− If x ≤ x1 (resp. x ≥ x2), the player is allocated to work (search), irrespective of her

beliefs.

− If x1 < x < x2, the player is switched between work and search as a function her

posterior beliefs.

The planner trades off two principal forces. On the one hand, she wants to allocate players

to those activities that maximize their current individual gains. To do so, she chooses the

activity capable of inducing the highest posterior variance. However, the variance itself

depends on p(x, t). When p(x, t) is very close to 1 (or, equivalently, 0) the gains from

learning a bit more are smaller and the differential across activities becomes negligible. Vice

versa when p(x, t) is very close to 1
2 , gains from learning are very high. On the other hand,

the planner internalizes the net effect that every player induces on ηs and wants to maximize

social welfare. There exists a group of types for which it is individually optimal to search

but contribute to ηs negatively in relative terms. The planner finds it optimal to switch

these types back and forth between work and search as a function of how informed they are.

The idea is that, when a player is poorly informed, her own individual gains from learning

are high. If, instead, she is very informed, her own individual gains are negligible. In the

first case, this player would be allocated to search and she would be switched to work when

she built a sufficiently high stock of information.

7. Social Influence and Public Opinion

In this section, we use our model to assess how resilient a society is against external manip-

ulations of the information arriving to a small share of players. In particular, we study how

resilience depends on the structure of social connections, especially as the society becomes

more connected. Ultimately, we are interested in understanding how difficult it is to influ-

ence public opinion by manipulating the information of a relatively small group of players,

which group is optimal to target, and how this depends on the level of connectivity of such a

society. We think of manipulations as “tweaks” in the meeting technology h. These tweaks

are such that the targeted group of players is consistently exposed to biased information.

These players are more likely to meet peers who have collected information that is more

favorable to one or the other hypothesis. We will assume that these manipulations happen

under a regime of unawareness. That is, the society commonly believes that h is unbiased,

while it is not. We believe this assumption is particularly realistic when the society is large

and its structure complex, as it is in our case. In such case, players can find it hard, if not

impossible, to detect these small tweaks in their meeting algorithm. The exercise we do in

this section is a normative one: the manipulator is a malevolent planner, constrained by

individual rationality, but not by Bayes consistency – the opposite of Section 6.

31



Let δ ∈ (0, 1) be a parameter of the problem. It sets the mass of players that will be directly

affected by the manipulation. The planner selects a target type x̄ ∈ X and all types in

the δ-neighborhood of target x̄ will have their meeting technology affected in the following

way:27 when searching for a dt interval of time, these players receive an aggregate signal,

πs(x), distributed normally with mean (ηs + b)xθdt and variance dt. The parameter b ∈ R
represents the planner’s bias. Without loss of generality, we will assume b = 1. The planner

filters the players that type x meets so as to bias the information she receives. Our model

offers a natural way to evaluate the effects of these manipulations. In Section 3.3, we showed

that the evolution of posterior beliefs for players who learn from others can be described in

terms of the following Brownian motion:

Γ(x, t) = ηsxtθ +B(t) ∼ N (ηsxtθ, t)

This implies that the values of ηw and ηs, which are respectively associated with work and

search, together with the distribution of types f , pin down the entire social distribution

of posterior beliefs. Therefore, we can capture the effect of the planner’s manipulation on

public opinion just by tracking its impact on ηs. Then, we combine changes in ηs with their

effects on the evolution of beliefs for the society, as by the equation above. As a simple

example of this, we already know that ηs does not affect beliefs of the working population.

Therefore, the larger the working population, the less disruptive these manipulations of h.

Let η̃s(x̄) be the altered version of ηs, following from the manipulation described above.

Denote Γ̃(x, t) := η̃sxtθ + B(t) the corresponding altered information process for a type x

who searches. Therefore, the impact on public opinions that follows from a manipulation of

the meeting algorithm for a δ-neighbor of x̄ ∈ X can be defined as the expected aggregate

deviation between the manipulated Γ̃(x, t) and the original Γ(x, t):

I(x̄, δ) := E
(∫

X×R+

(
Γ̃(x, t)− Γ(x, t)

)
f(z)τ(t)dzdt

∣∣∣ θ )
This discrepancy can be interpreted as the average distortion in beliefs that the manipulation

has induced. Clearly, I(x̄, δ) depends on how types in the δ-neighbor of player x̄ can affect

the opinion of other players. Therefore, it is natural to think of I(x̄, δ) as a measure of their

influence on the rest of the society.

Definition 5. The social influence of type x ∈ X is defined as ι(x) := limδ→0
1
δ I(x, δ).

The study of public opinion manipulation led us to a definition of social influence. This is a

natural outcome. How susceptible a society is to external manipulation is a function of the

relative influence of its members. The stronger the influence a single player exerts on the

society, the easier its manipulation. The next result characterizes our measure of influence.

27The δ-neighbor of x̄ is defined as the only interval of X that solves F ([x̄− ε, x̄+ ε]) = δ.
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Proposition 7. Fix f ∈ F and g ∈ G and let (x?, ηs) be stationary equilibrium. The social

influence exerted by a player of type x is

ι(x) =


xg̃(x)ηs
cηw

1−H(x?)

H(x?)
if x ≥ x?

0 else.

Proposition 7 shows how the different components of our model jointly contribute to ι(x).

The equilibrium, the social structure f , the communication frictions g, a player’s type; all

these ingredients affect ι(x) in different ways. To begin, notice that manipulating the meeting

technology of a worker produces no consequences whatsoever. Workers do not learn from

others, and therefore make no use of their meeting technology. Searchers, on the contrary,

can be used by the planner as drivers of her manipulation. Indeed, the information they

gather is affected by h, via ηs. The way h affects ηs is spelled out in the Proposition above.

First, the higher a searcher’s type is, the stronger her influence. This is because, by attracting

others more strongly, her biased beliefs leak through the society in a more pervasive way.

Second, the higher the searcher ’s type, the higher
g̃(x)
c . This searcher collects information at

a faster rate, relative to workers. In a sense, she makes use of the tweaked meeting function

h more than others do. Finally, and perhaps most importantly, the influence of a player

depends on the equilibrium. In particular, ι(x) depends on two important factors:

The Relative Speed of Learning. The ratio ηs
ηw

represents the relative speed at which a searcher

learns relative to a worker. The higher ηs, the faster her opinion spreads out, the stronger

her influence on the society.

Amplification effect. As discussed in Section 5.2, the biased beliefs of the searchers are then

spread out in the society by other searchers, even those outside the δ-neighborhood of x̄. The

strength of this effect depends on the relative size of the searcher population, adjusted by its

connectivity. In particular, when x? decreases, the expected length of a chain increases and

so does the influence of player x. This intuition is clear. When x? decreases, more players are

searching. Moreover, the inflow of information produced by workers is smaller. Therefore,

the feedbacks among the searcher population are stronger. In this context, manipulating

the meetings of a player has amplified effects on the whole society. The biased information

rebounds among searchers and become part of everyone’s information set. An important

implication of this analysis is that any change in g or f leading to an increase in ηs makes

the society less resilient to external manipulations. This observation is captured in the next

result.

Corollary 5. Let f, f ′ ∈ F be such that f ′ D f . The increase in connectivity either de-

creases the quality of social information ηs or makes the society less resilient to external

manipulation.
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We observe that societies that are highly effective at aggregating and diffusing information

also happen to be particularly susceptible to manipulations. These societies are less reliant

on work precisely because they are efficient at the diffusion of information. However, this

situation creates a weak spot: as the influence of each type increases in this society, it becomes

easier to shift public opinion by manipulating the learning process for an increasingly small

share of players in the population.

8. Discussion

In this section, we discuss some of our assumptions, their generalization and extensions in

more depth.

8.1. Communication Technologies with Finite Capacity

In our model, the communication technology g ∈ G imposes frictions in searcher-to-searcher

communications. These frictions do not apply to worker-to-searcher communications. This

assumption captures the idea that intermediated signals lose part of their initial value.

Searchers don’t fetch the information directly from a primitive source. Rather, they re-

ceive signals from others, possibly searchers. For this reason, they are not as effective as

workers are at conveying the information they collected. This particular assumption makes

the equilibrium tensions particularly stark and transparent, but it is by no means essential.

Most of our results extend to the more general case in which the communication frictions

apply to everyone, independent of their activity (Appendix B). This requires an extra as-

sumption on g, concavity, capturing the idea of a finite capacity communication channel:

the more bits of information one tries to transfer, the more laborious the communication

will be. This idea goes back to Shannon (1948) and became a standard tool in information

theory. In recent years, Sims (2003), Steiner et al. (2016) and Jung et al. (2016) have used

and discussed variations of this idea in the literature on rational inattention.

A finite capacity communication technology introduces distortions similar to those discussed

so far. Players who search are more connected in equilibrium. Therefore, they collect

signals of precision ηs at an intensity which is higher than it is for workers. Concavity of

g imposes a wedge between the communication abilities of a player who owns fewer signals

of higher precision ηw (a worker) relative to one who owns more signals of lower precision

ηs (a searcher). This wedge is not internalized by players when making their individual

choices. This establishes a primacy for original sources, a gap between first and second-

hand information that is very similar to the one discussed in Section 3. More concretely, in

34



the model presented so far, c := Eτ (
√
t) represents a measure of the expected number of

signals a worker collects in her life. When frictions apply uniformly to all players, c becomes

Eτ (g(
√
t)) =: g̃(1). The trade-off discussed in Equation 7, which is the core inefficiency in

our model, becomes g̃(x)ηs − g̃(1)ηw.

8.2. Stationary and Non-Stationary Equilibria

A working assumption used in most of the paper is the stationarity of the dynamic environ-

ment. In our game, players enter and leave at stochastic times. The outflow of “knowledge”

associated with players’ departure, together with the inflow of “ignorance” associated with

their arrival, both guarantee that the amount of information in the economy is steady across

time. Focusing on the unique stationary equilibrium makes our model tractable and it allows

us to study the comparative statics as the society becomes more connected. In Appendix

C, we study dynamic equilibria to understand the stability of the unique stationary equi-

librium. There is an initial time t = 0 at which a unit mass of players is born. As time

unfolds, new players enter the economy, while older players may leave. Our analysis leads to

three conclusions. First, a dynamic equilibrium can be reduced to a non-linear second-order

differential equation. The solution of such ODE is an “information path” for ηs(t), now a

time-dependent equilibrium object.28 Second, we show that for each dynamic equilibrium,

the information path converges to the stationary equilibrium defined in Section 4, thereby

establishing its stability. Third, we show that, when ηs(t) increases, players transit from

work to search, starting with the more connected ones. These dynamics are intuitive. At

time zero, all players share the same (prior) beliefs. As they cannot learn anything from each

other, they work. This builds a stock of information, which makes ηs(t) increase. Highly

connected types will then find it optimal to switch to search, and this effect will unravel to

lower types as ηs(t) increases.

9. Conclusion

In this paper, we introduced a dynamic learning model for large connected societies. The

novelty in our approach is to capture both the creation of information, arising from players’

decision to work, and its diffusion, arising from their decision to search. These two aspects

of social learning are tightly related: when a society is effective at diffusing information,

this reduces individual incentives to create new information. However, when those who

28The existence and uniqueness of such equilibria can be investigated by invoking Picard-Lindelöf

theorem and transforming the equilibrium condition in a system of first-order ODEs, whenever

possible.
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create information are few and peripheral, this hinders the diffusion of information. The

existing literature on social learning captures the components of these trade-offs, but not

their joint force. For example, in the strategic experimentation literature, the problem of

information diffusion is absent, as all “social” information, whether in payoffs or in the

actions, is usually assumed to be public. The social networks literature explicitly tackles

the problem of information aggregation and diffusion. However, information is not created

endogenously, but rather by players endowed with a set of exogenous signals.

This paper combines ideas and modeling tools from these literatures. Players face a basic

tension between learning by doing (work) and learning from others (search). Learning is

frictional as we explicitly allow for both search and communication frictions. Under a

frictional communication technology, we assume that any searcher-to-searcher information

exchange could entail some loss of information. In the unique stationary equilibrium of our

game, all existing information is originally produced by some worker. Players who search

do not contribute to the production of new information. Nevertheless, these players exert

a critical social role in enabling information that would otherwise remain local and private,

to be aggregated and diffused to different parts of the society. This increases the value of

search and attracts a group of marginally connected players into this activity. Their diffusion

ability, however, is no better than their ability to create information. This introduces a

distortion that reverberates through the rest of the searching population, thereby causing

its amplification (Section 5.2).

Our main contribution is to formally identify new inefficiencies that characterize social learn-

ing in this richer environment. These inefficiencies go beyond the known free-riding effect.

First, we highlighted the critical role played by those who search for information in the ag-

gregation and diffusion of information, by showing that a society needs searchers to achieve

some degree of informational efficiency (Section 4). However, not all searchers are alike and

the structure of social connections affects efficiency in ways that are complex and subtle.

To explore this, we studied the equilibrium consequences of increasing the connectivity of

a society. We show that increasing connectivity can lead to a strict decrease in the quality

of social information (Section 5.3). Our results reveal how this inefficiency is directly linked

to communication frictions. Second, we analyze how players of different connectivity lev-

els choose their learning activity in equilibrium, and compare this to the planner’s solution

where each type is allocated to an activity to maximize social welfare (Section 6). This

allows us to study more generally the inefficiencies associated with social learning. We show

that allocation of activities in the planner’s solution can be in direct contrast with the equi-

librium one, especially when communication frictions are severe. In such cases, the planner’s

solution requires players with high connectivity to be the producers of information in the

society, whereas in equilibrium, this role is necessarily taken on by players with low connec-
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tivity. Third, we apply our model to study how resilient a society is to external manipulation

of public opinion and how this depends on the connectivity of the society (Section 7). An

important implication of our analysis is that societies that are very effective in aggregating

and diffusing information are also particularly susceptible to manipulations.
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A. Proofs.

Lemma A1. Following a choice of αt, posterior belief pt evolves according to:

dpt ∼ N
(

0, 4dt
(
pt(1− pt)

)2(
(1− αt)2η2

w + α2
tx

2η2
s

))
.

Proof. Fix a time t and a posterior belief pt. To begin with, suppose we want to compute

dpt following a generic signal ds ∼ N (µθdt, σ2dt) for some µ and σ. From Bayes’ rule,

pt+dt =
pte
− 1

2σ2dt

(
dst−µθ̄dt

)2

pte
− 1

2σ2dt

(
dst−µθ̄dt

)2

+ (1− pt)e−
1

2σ2dt

(
dst−µθdt

)2 .

Therefore,

dpt = pt+dt − pt

=
pt(1− pt)

(
e−

1
2σ2dt

(
dst−µθ̄dt

)2

− e−
1

2σ2dt

(
dst−µθdt

)2)
pte
− 1

2σ2dt

(
dst−µθ̄dt

)2

+ (1− pt)e−
1

2σ2dt

(
dst−µθdt

)2

Taking the squares and using the fact that ds2
t = σ2dt, the exponential terms can can be

simplified. For example,

e−
1

2σ2dt

(
dst−µθ̄dt

)2

= e−
1
2 eθ̄

µ

σ2 dst−
1
2
µ2

σ2 dt.

Moreover, notice that, by a Taylor expansion,

eθ̄
µ

σ2 dst−
1
2
µ2

σ2 dt = 1 + θ̄
µ

σ2
dst

where we neglected all terms of order dt
3
2 and higher. Putting all this together in the

expression for dpt:

dp(x, t) =
2pt(1− pt) µ

σ2dst

1 + (2pt − 1) µ
σ2dst

= 2pt(1− pt)
µ

σ2
dst
(
1− (2pt − 1)

µ

σ2
dst
)

= 2pt(1− pt)
( µ
σ2
dst − (2pt − 1)

µ2

σ2
dt
)

where we used the approximation (1 + x)−1 ≈ 1− x. Inside the expression in the last line,

there is the random variable µ
σ2dst − (2pt − 1)µ

2

σ2dt. Unconditional on θ, its expectation is

zero and its variance µ2

σ2dt. It inherits its distribution from dst. Therefore,

dpt ∼ N
(

0,
4µ2dt

σ2

(
pt(1− pt)

)2
)
.
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Now suppose that in the interval [t, t+ dt), a player of type x chooses αt. The evolution of

pt can be written as dpt = (1−αt)dpt,w +αtdpt,S, where dpt,w and dpt,s are the evolutions of

dpt in case the signal received is dπw and dπs, respectively. Notice that since dπw or dπs are

independent, so are dpt,w and dpt,s. Therefore, using the result proven above:

dpt = (1− αt)dpt,w + αtdpt,s ∼ N
(

0, 4dt
(
pt(1− pt)

)2(
(1− αt)2η2

w + α2
t η

2
sx

2
))
.

Rearranging gives us the result. �

Lemma A2. The HBJ equation of the agent’s problem is:

v(pt) = max
αt∈[0,1]

u(pt) +
2

δ + r
p2
t (1− pt)2v′′(p)Q(αt),

where Q(αt) = (1− αt)2η2
w + α2

tx
2η2
s .

Proof. We can approximate v with a second-order Taylor expansion:

E(v(pt+dt)|αt) ≈ E
(
v(pt) + v′(pt)dpt +

1

2
v′′(pt)(dpt)

2
∣∣∣ αt)

where dpt is a random variable that depends on αt. By Lemma A1, we know the distribution

of dpt and we can write

E(v(pt+dt)|αt) ≈ v(pt) + v′′(p)2p2
t (1− pt)2Q(αt)dt,

since E(dpt) = 0, by Lemma A1. Therefore, plugging this back into Equation 1 gives:

v(pt) = (r + δ)u(pt)dt+
(
1− (r + δ)dt

)(
v(pt) + v′′(p)2p2

t (1− pt)2Q(αt)dt
)

where we used the approximation e−(r+δ)t ≈ 1− (r+ δ)dt. Rearranging and ignoring terms

dt2, gives us the result. �

Proof of Lemma 1: From Lemmas A1 and A2, we have that

v(pt) = max
αt∈[0,1]

u(pt)+
2

r + δ
p2
t (1−pt)2v′′(pt)Q(αt) = u(pt)+

2

r + δ
p2
t (1−pt)2v′′(pt) max

αt∈[0,1]
Q(αt),

where Q(αt) := (1− αt)2η2
w + α2

tx
2ηs. If v′′ > 0, the problem is maximized with α? = 1, if

x2ηs > η2
w, and with α?t = 0, otherwise. Rearranging gives x? = ηw/ηs. We are therefore left

to show that v is convex. To do so, we solve the ODE.

Rewrite the ODE can be written as v̄(p) = p + Kp2(1 − p)2v̄′′(p), for p ≥ 1
2

and v(p) =

1− p+Kp2(1− p)2v′′(p) otherwise, where we set K :=
2Q(α?t )

r+δ
and drop all t subscripts. Let

ζ :=

√
1+ 4

K

2
and a := 1

2
− ζ < 0 and b := 1

2
+ ζ > 0. It can be verified by substitution that

equations

v̄(p) = p+ c1p
a(1− p)b + c2p

b(1− p)a

v(p) = 1− p+ c̃1p
a(1− p)b + c̃2p

b(1− p)a
(A.1)
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are generic solutions of their respective ODE. To pin down the values of c1, c2, c̃1, and c̃2, we

invoke three properties that v must posses: (1) symmetry around p = 1
2
, (2) smooth pasting

at 1
2
, and (3) and boundaries conditions.

(1) The problem faced by the agent is symmetric in the sense that the flow payoff she

optimally respond to beliefs symmetric around 1
2
, e.g. p̄ = 1

2
− ε or p = 1

2
+ ε, when

ε ∈ [0, 1/2], are the same. Thus, also the corresponding values v(p̄) and v̄(p) need to

match. We require that for all such ε, v̄(p) = v(p̄). Notice that 1 − p̄ = p. Thus,

symmetry implies that

pap̄b(c1 − c̃2) = pbp̄a(c2 − c̃1)

which is true for all ε ∈ [0, 1/2] if and only if c1 = c̃2 and c2 = c̃1.

(2) Next, we impose smooth pasting at p = 1
2
. This requires that v̄′(p?) = v′(p?). Com-

puting the derivatives and evaluating them at p gives

v̄′(p?) = 1 + c1

(
a− p?

)
+ c2

(
b− p?

)
= 1 + c1(−ζ) + c2ζ

v′(p?) = −1 + c̃1

(
a− p?

)
+ c̃2

(
b− p?

)
=−1 + c̃1(−ζ) + c̃2ζ

hence

2 + ζ(c̃1 + c2) = ζ(c1 + c̃2).

(3) Finally, at the boundaries p ∈ {0, 1}, the agent is certain that the state is either 1

or −1. Thus, the value of the problem must necessarily be equal to 1. Let v̄(1) = 1.

Then, since a < 0,

v̄(1) = 1 + c11a0b + c21b0a = 1 + c10 + c2∞ = 1.

Thus, c2 = 0 is the only constant that can guarantee v̄(1) = 1. A similar reasoning at

p = 0 gives us c̃1 = 0.

Putting these three conditions together we get the system
c1 = c̃2 and c2 = c̃1

2 + ζ(c̃1 + c2) = ζ(c1 + c̃2)

c̃1 = c2 = 0

⇒
c1 = c̃2 = 1

ζ
= 2 µ̃

√
x√

µ̃2x+2(r+δ)

c̃1 = c2 = 0

To conclude, the value function is:

v(p) =

{
p+ cpa(1− p)b if p ≥ 1

2

1− p+ cpb(1− p)a else.

where c > 0, a < 0 and b > 0. For p > 1
2
, its second derivative is

v′′(p) = cpa(1− p)b
(a(a− 1)

p2
+
b(b− 1)

(1− p)2

)
= −cpa(1− p)bab

( 1

p2
+

1

(1− p)2

)
> 0
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where we used a − 1 = −b and b − 1 = −1 and ab < 0. In a specular way, one can show

that v′′(p) > 0 for p ≤ 1
2
. �

Lemma A3. Fix a player of type x and a time t. Let π(x, t) be the stock of information

and p(x, t) the one for posterior beliefs. There exists a one-to map ξ : R→ R, independent

of x and t, such that p(x, t) = ξ(π(x, t)).

Proof. Define the log-likelihood ratio of posterior beliefs as follow:

z(x, t) := ln
p(x, t)

1− p(x, t)
= ln

p0φ(π(x, t)|θ = 1)

(1− p0)φ(π(x, t)|θ = −1)
= z(x, 0) + ln

φ(π(x, t)|θ = 1)

φ(π(x, t)|θ = −1)

where φ(π(x, t)|θ) is the probability density of finding π(x, t) at the given level, conditional

on the state being θ. Notice that,

z(x, t) = K + 2ηaπ(x, t)

where K is a constant and ηa = ηw if x is a worker and ηs otherwise. We conclude that,

the process for p(x, t) is a one-to-one transformation of z(x, t), which, in turn, is a linear one

transformation of π(x, t). �

Lemma A4. Bayes consistency E(πs) = ηsθ implies a unique positive solution given by

ηs = ηw
cH(x)

1−
∫
x
g̃(z)h(z)dz

≥ 0.

Proof. From Equation 4, we have that

ηs = ηwH(x)

∫ √
tτ(t)dt+ ηs

∫
x

(∫
g(z
√
t)τ(t)dt

)
h(z)dz. (A.2)

Denote g̃(z) = Eτ (g(z
√
t)) and c = Eτ (

√
t) and rearranging we get the result. We are left

to show that ηs ≥ 0 for all x. Notice that 1−
∫
x
g̃(z)h(z)dz is increasing in x. Moreover, for

any g ∈ G such that g ≤ idR+ , we have

g̃(z) :=

∫
g(z
√
t)τ(t)dt ≤

∫
z
√
t τ(t)dt.

Therefore for all x ∈ X and g ∈ G, we have

1−
∫
x

g̃(z)h(z)dz ≥ 1−
∫

0

(∫
z
√
t τ(t)dt

)
h(z)dz.

Therefore, in order to ensure ηs ≥ 0, it is enough to show that the right hand side of this

equation is positive. However, notice that∫
0

(∫
z
√
t τ(t)dt

)
h(z)dz = Eh(z)Eτ (

√
t).
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By definition of f , we have that Eh(z) := Ef (z
2)/Ef (z). Finally, Assumption 1 ensures

that Eh(z)Eτ (
√
t) ≤ 1.

Proof of Proposition 1. (Existence) Equation (6) can be rewritten as

Φ(x) := cxH(x) +

∫
x

g̃(z)h(z)dz = 1. (A.3)

First we show that the Φ(x) crosses 1 at least once. Notice that at x = 0,
∫

0
g̃(z)h(z)dz ≤ 1,

as shown in the proof of Lemma A4. Therefore Φ(0) ≤ 1. Vice versa, limx→∞Q(x) = ∞.

Next, we show that Φ is continuous, as being the sum and products of continuous functions.

First, notice that H is absolutely continuous, as it admits a density h. Second, for any

sequence (xn) such that xn → x, the sequence
∫
xn
g̃(z)h(z)dz is a positive and non-increasing.

Every monotonic and bounded sequence admits a limit point, from which we conclude also∫
x
g̃(z)h(z)dz is continuous. Continuity of Φ, via a straightforward application of Bolzano’s

Theorem, guarantees the existence of a crossing point Φ(x) = 1.

(Uniqueness). To show the fixed-point is unique, we show that Φ is strictly increasing. Fix

x′ > x. We have

Φ(x′)− Φ(x) = c
[
x′H(x′)− xH(x)

]
−
∫ x′
x
g̃(z)h(z)dz

≥ c
([
x′H(x′)− xH(x)

]
−
∫ x′
x
zh(z)dz

)
.

Therefore, Φ(x′) − Φ(x) > 0, as we wished to show. We conclude that the equilibrium is

unique. �

Proof of Proposition 2. Fix any g, g′ ∈ G with g′ ≥ g. We need to show that equilibrium

ηs under g is lower than under the equilibrium ηs under g′. To show this, we prove a stronger

claim, which we will later use in the main text. Namely, let ηs(x, g) be defined as in Equation

5, were we make explicit the dependence on x and g. We show next that ηs(x, g) ≤ ηs(x, g
′),

for all x ∈ X. We have

ηs(x, g) = ηw
cH(x)

1−
∫
x
g̃(z)h(z)dz

≤ ηw
cH(x)

1−
∫
x
g̃′(z)h(z)dz

= ηs(x, g
′),

since, for all x,

g̃′(x) :=

∫
g′(x
√
t)τ(t)dt ≥

∫
g(x
√
t)τ(t)dt =: g̃(x).

Since the equation that defines individual rationality, ηs = ηw/x, is strictly decreasing in x,

this proves our claim. �

Proof of Proposition 3. First, notice that ηs(x) as defined by Equation 5, has a maximum

at
dηs(x)

dx
= 0 ⇒ 1−

∫
x

g̃(z)h(z)dz = g̃(x)H(x).

46



From Equation A.3, the equilibrium x? is pinned down by:

1−
∫
x?
g̃(z)h(z)dz = cx?H(x?).

Notice that g̃(x) ≤ cx, where the inequality is strict for all g < idX . Putting all together

we conclude that, for all g < idX , at the respective equilibrium x?, dηs(x)
dx

> 0. Vice versa,

when g = idX , dηs(x)
dx

= 0. �

Proof of Proposition 4 Let (x?, ηs) be the equilibrium. Fix x̄ ∈ X as suppose x̄ < x?.

The information elasticity for this type can be computed as follows:

εw(x̄) :=
dηs/dcx̄
ηs/cx̄

=
ηwh(x̄)

1−
∫
x?
g̃(z)h(z)dz

cx̄
ηs

=
h(x̄)

H(x?)

ηwcx̄
ηwc

.

Since x̄ is a worker cx̄ = c. Moreover, by definition of h, we have h(x̄) = x̄f(x̄)/Ef (z).

Therefore,

εw(x̄) = cηw
x̄

H(x?)

f(x̄)

cηwEf (z)
.

Now suppose x̄ ≥ x?. The information elasticity for this type can be computed as follows:

εs(x̄) :=
dηs/dg̃(x̄)

ηs/g̃(x̄)
=

cηwH(x?)(
1−

∫
x?
g̃(z)h(z)dz

)2h(x̄)
g̃(x̄)

ηs
= g̃(x̄)ηs

h(x̄)

H(x?)

1

cηw
.

Using the definition of h,

εs(x̄) = g̃(x̄)ηs
x̄

H(x?)

f(x̄)

cηwEf (z)
.

From there, we can compute relative difference εs(x̄)− εw(x̄) and rearrange. �

Proof of Proposition 5. (ii)⇒ (i). Let g(y) = y for all y ∈ R+ and consider any f ′ D f .

It is straightforward to check that the latter implies h′Dh. The fixed-point map of Equation

6 can be rewritten as

x =
1

c
+

∫
x

(x− z)h(z)dz.

Moreover,∫
x

(x−z)h(z)dz =

∫
X

(x−z)1{z>x}(z)h(z)dz >

∫
X

(x−z)1{z>x}(z)h′(z)dz =

∫
x

(x−z)h′(z)dz,

by definition of FOSD and the fact that (x − z)1{z>x} is non-increasing. Thus, letting x?

be the equilibrium under f ,

x? =
1

c
+

∫
x?

(x? − z)h(z)dz >
1

c
+

∫
x?

(x? − z)h′(z)dz.

Notice that d
dx

∫
x
(x − z)h(z) = 1 −H(x) > 0. Therefore, the equilibrium is re-established

at f ′ by decreasing x?, therefore increasing ηs as we wished to prove.
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(i) ⇒ (ii). This direction is equivalent to ¬(ii) ⇒ ¬(i) which, however is the content of

Observation 1. �

Proof of Theorem 1. For clarity, we divide the proof of these result in four Lemmas. To

being, fix an increasing uniform sequence (hn)n∈N , fix n′ > n in N and some x ∈ X. Denote:

h∆(z, n) := hn′(z)− hn(z) and D(z) :=
h∆(z, n′)∫

x
h∆(z, n′)dz

− h∆(z, n)∫
x
h∆(z, n)dz

.

Notice that, since hn′Dhn, the function h∆(z, n) is single-crossing (SC)29 in z and integrate

to 0. In fact,

h∆(z, n) := hn′(z)− hn(z) = (γ(z)− 1)hn(z),

where γ(z) = hn′(z)/hn(z) is positive, non-decreasing and crosses 1, by definition of MLR.

Since hn(z) > 0, we have that h∆(z, n) ≥ 0 implies h∆(z′, n) ≥ 0 for all z′ ≥ z. Moreover,∫∞
0
h∆(z, n)dz = 1 − 1 = 0. For this reason, together with the fact that h∆(z, n) is SC, we

have that
∫
x
h∆(z, n)dz ≥ 0. Also, notice that

∫∞
x
D(z)dz = 0.

We begin by showing that D(z) inherits the single-crossing property from h∆(z, n′) and

h∆(z, n).30

Lemma A5. D(z) is single-crossing in z in the interval [x,∞).

Proof. Since the SC property is preserved under scalar transformation, we prove that the

function

D′(z) := h∆(z, n′)− βh∆(z, n) with β :=

∫
x
h∆(z, n′)dz∫

x
h∆(z, n)dz

≥ 0

is single-crossing in z in the interval [x,∞). Let D′(z) ≥ 0. We want to show that

D′(z) ≥ 0 for all z′ ≥ z. Note that, since hn and hn′ belong to a uniform sequence, we have

that h∆(z, n′) ≥ 0 implies that h∆(z, n) ≥ 0. That is, h∆(z, n) crosses zero before h∆(z, n).

Therefore, we have to consider only three cases: (1) when h∆(z, n′), h∆(z, n) ≥ 0, (2) when

h∆(z, n′) ≤ 0 ≤ h∆(z, n) and (3) h∆(z, n′), h∆(z, n) ≤ 0.

(1) Suppose h∆(z, n′), h∆(z, n) ≥ 0. Since D′(z) ≥ 0, we have h∆(z, n′) ≥ βh∆(z, n).

Therefore,

β ≤ h∆(z, n′)

h∆(z, n)
=
hn′′(z)− hn′(z)

hn′(z)− hn(z)
.

which is increasing since the sequence is uniform (Definition 4). We conclude that for

any z′ ≥ z, D′(z′) ≥ 0.

(2) Suppose h∆(z, n′) < 0 ≤ h∆(z, n). This implies D(z) < 0, a contradiction.

29A function f : R→ R is single-crossing if f(z) ≥ 0 implies f(z′) ≥ 0 for all z′ ≥ z.
30This is done in a very much similar spirit of Athey (2002) and, more closely, of Quah and

Strulovici (2012).
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(3) Finally, suppose h∆(z, n′), h∆(z, n) ≤ 0. We will show that this is incompatible with

D′(z) ≥ 0. By way of contradiction, suppose that D′(z) ≥ 0. Note that at the right-

most boundary of this region, we have that h∆(z0, n) = 0 (since h∆(z, n) crosses zero

first). Therefore, at z0, we have that D′(z0) = h∆(z0, n
′) ≤ 0. By continuity, there

must be a z? ∈ [z, z0], such that D′(z?) = 0. This implies that h∆(z?,n′)
h∆(z?,n)

= β. Since, the

sequence is uniform, we have h∆(z,n′)
h∆(z,n)

≤ β. Now we use the definition of β.

β :=

∫
x
h∆(z, n′)dz∫

x
h∆(z, n)dz

=

∫ x
h∆(z, n′)dz∫ x
h∆(z, n)dz

=

∫ x
h∆(z, n′)h∆(z,n)

h∆(z,n)
dz∫ x

h∆(z, n)dz
<

∫ x
h∆(z, n)βdz∫ x
h∆(z, n)dz

= β

This gives us the contradiction. In the second equality, we used that for any n

and x,
∫
h∆(z, n)dz = 0. For the inequality, we used the fact that x < z?. This is

automatically the case since we are trying to show SC of D′ on [x,∞).

This shows that D′(z) ≥ 0 only in case (1), where we showed D′(z′) ≥ 0 for all z′ ≥ z.

Therefore D′ is SC in the interval [x,∞) and so is D. �

Now that we have established the SCP for D(z), we move to a second instrumental result,

which builds on Lemma A5.

Lemma A6. We have that

∫
x

m(z)D(z)dz ≤ 0.

Proof. By definition of D(z), notice that
∫∞
x
D(z)dz = 0. Since D(z) is SC in the interval

[x,∞) (Lemma A5), we have that
∫ y
x
D(z)dz ≤ 0 for any y <∞. Integrating by parts:

∫
x

m(z)D(z)dz = m(z)

∫ z

x

D(y)dy
∣∣∣z=∞
z=x

−
∫
x

(
m′(z)

∫ z

x

D(y)dy
)
dz

=−
∫
x

(
m′(z)

∫ z

x

D(y)dy
)
dz ≤ 0.

The second equality comes from the fact that
∫∞
x
D(z)dz =

∫ x
x
D(z)dz = 0. The inequality

comes from
∫ y
x
D(z)dz ≤ 0 and the fact that m′(z) ≤ 0. To confirm the latter, recall that

m(z) := c−1
(
cx − g̃(z)

)
. Therefore, m′(z) = −c−1

∫ √
tg′(z
√
t)τ(t)dt ≤ 0, by the fact that

g′ ≥ 0 is increasing. (Definition 1) �

Finally, the last and most important of these instrumental results.

Lemma A7. Fix x ∈ X arbitrarily and consider an D-increasing uniform sequence in H.

The functional L : N → R, defined as

L(n) =

∫
x

m(z)hn(z)dz,

is quasi-concave in n ∈ N .
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Proof. To show this, it is enough to prove that, for n′′ ≥ n′ ≥ n,

L(n′′)− L(n′) ≥ 0 ⇒ L(n′)− L(n) ≥ 0.

Notice that

0 ≤ L(n′′)− L(n′) =

∫
x

m(z)
(
hn′′(z)− hn′(z)

)
dz =

∫
x

m(z)h∆(z, n′)dz

Therefore, we need to show that, for any n′ ≥ n∫
x

m(z)h∆(z, n′)dz ≥ 0 ⇒
∫
x

m(z)h∆(z, n)dz ≥ 0.

Fix n′ ≥ n and assume
∫
x
m(z)h∆(z, n′)dz ≥ 0. As argued above,

∫
x
h∆(z, n′)dz ≥ 0 (for

any n′). Therefore, ∫
x
m(z)h∆(z, n′)dz∫
x
h∆(z, n′)dz

≥ 0.

Moreover,

∫
x
m(z)h∆(z, n′)dz∫
x
h∆(z, n′)dz

−
∫
x
m(z)h∆(z, n)dz∫
x
h∆(z, n)dz

=

∫
x

m(z)D(z)dz ≤ 0.

Thus,

0 ≤
∫
x
m(z)h∆(z, n′)dz∫
x
h∆(z, n′)dz

≤
∫
x
m(z)h∆(z, n)dz∫
x
h∆(z, n)dz

⇒
∫
x

m(z)h∆(z, n)dz ≥ 0,

concluding the proof of Lemma A7. �

With this last result, we can finally provide the proof for Theorem 1.

Let (hn)n be a D-increasing uniform sequence in H and let hn′′ D hn′ D hn. Call xn, xn′

and xn′′ the fixed points of Equation (6) for hn, hn′ and hn′′ , respectively. To show quasi-

concavity we need to show that xn′ ≥ min{xn, xn′′}. That is, we need to show: (Case 1) if

xn′ ≤ xn′′ , then xn ≤ xn′ , and (Case 2) if xn ≥ xn′ then xn′ ≥ xn′′ . To begin, notice that, by

Proposition 1, we know that the self-map in Equation (6) has a unique fixed point. Since

c > 0, it must be the case that the function 1
c

+ L(x, h) crosses the function x from above.

Indeed,

1

c
+ L(0, n) =

1

c
+

1

c

∫ ∞
0

(0− g̃(z))hn(z)dz =
1

c

(
1−

∫ ∞
0

g̃(z)hn(z)dz
)
> 0.

We discuss Case 1 and Case 2 separately.

Case 1. Let xn′ ≤ xn′′ . Then, by the argument just made, it must be that 1
c

+

L(xn′ , n
′′) ≥ 1

c
+ L(xn′ , n

′) = xn′ , otherwise we would contradict xn′ ≤ xn′′ . This

implies that L(xn′ , n
′′) ≥ L(xn′ , n

′). By Lemma A7, we know L is quasi-concave in

h. That is, L(xn′ , n
′′) ≥ L(xn′ , n

′) implies that L(xn′ , n
′) ≥ L(xn′ , n). Again, by the

single crossing argument above, this implies that xn ≤ xn′ .
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Case 2. This case mimics the previous one. Let xn ≥ xn′ . We know that this implies

L(xn′ , n) ≥ L(xn′ , n
′). By Lemma A7, we get that L(xn′ , n

′) ≥ L(xn′ , n
′′) and conclude

that xn′ ≥ xn′′ .

The two cases above showed that xn′ ≥ min{xn, xn′′}. Since n′′ ≥ n′ ≥ n were arbitrary,

we conclude that the fixed point x of Equation 6 is quasi-concave in n. By the equation

that defines individual rationality this implies that ηs is quasi-convex, concluding the proof

of Theorem 1. �

Lemma A8. Fix a type z ∈ X. The derivative of W SP1(α) with respect to a marginal

increase in α(z) is:

W SP1

α(z)(α) = f(z)
(
vs(z, ηs)− vw(ηw) + z

(
ηsg̃(z)− ηwc

)
K
)
,

where K ≥ 0 is a positive constant.

Proof. We compute the derivative of W SP1 with respect to a marginal increase in α(z), the

probability that type z is allocated to search. In computing this derivative, we need to

compute
dvs(z, ηs)

dα(z)
=
dvs(z, ηs)

dηs

dηs
dα(z)

.

We know that the first term is positive for all z. The second term instead is

dηs
dα(z)

= zf(z)C
(
g̃(z)ηs − cηw

)
.

where we used the definition of h, of ηs and we denoted C :=
(
Ef (z)

(
1−
∫
X
α(z)g̃(z)h(z)dz

))−1
,

a positive constant. Putting all together, we get

W SP1

α(z)(α) = f(z)
(
vs(z, ηs)− vw(ηw) + z

(
ηsg̃(z)− ηwc

)
K
)
,

where K = C
∫
X
α(y)dvs(y,ηs)

dηs
f(y)dy ≥ 0.

Proof of Corollary 1. The first part follows from Proposition 5. We are left to show that for

any regular sequence (fn(z))n∈N ⊂ F , ηs is monotonically decreasing if g = min(G,≥). When

the communication technology is completely uninformative, we we have that ηs = ηwcH(x?),

a strictly increasing function of x?. If f ′ DMLR f , the respective h′ and h are also ranked by

DMLR, i.e. h′ DMLR h. Moreover, since DMLR ⊂ D, H ′(x) ≤ H(x), for all x ∈ X. Thus,

fixing x?, ηs is decreasing in the shift. Since ηs = ηw/x is strictly decreasing in x, we conclude

that x? is increasing in the shift, and therefore ηs is decreasing.

Proof of Proposition 6. (If part). Let g = max{G,≥}. As by Lemma A8, the sign

of W SP1

α(z)(α) is positive, meaning that the planner wants a type z to search, if and only if

vs(z, ηs) − vw(ηw) ≥ z
(
ηwc − ηsg̃(z)

)
K. In the particular case when g is maximal, we have

that g̃(z) = cz. Therefore, the inequality becomes

vs(z, ηs)− vw(ηw) ≥ zc
(
ηw − zηs

)
K.
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Now let (x?, ηs) be the equilibrium under such g. Notice that by definition of x?, we have

ηw = x?ηs and vs(x
?, ηs) = vw(ηw). For all types above x?, the LHS of the inequality is

strictly positive, while the RHS is strictly negative. For all types below x?, the RHS of the

inequality is strictly negative, while the RHS is strictly positive. Therefore, W SP1

α(z)(α) ≥ 0 if

and only if x ≥ x?, showing that the allocation is indeed efficient.

(Only if part). Now take any g < max{G,≥}. By continuity, we have that g̃(z) < E(
√
t)z.

Now consider the equilibrium (x?, ηs). We have that

ηwE(
√
t)− ηsg̃(x?) > c

(
ηw − x?ηs

)
= 0 = vs(x

?, ηs)− vw(ηw).

The planner would strictly prefer this type to work. This constitutes a deviation from the

equilibrium allocation, thereby proving that it cannot be efficient. �

Proof of Corollary 2. Consider the extreme case g(y) := 0. In this case, meeting other

searchers is completely unproductive. We have that g̃(z) = 0 for all z ∈ X and ηs can be

written as

ηs(α) = ηwc

∫
X

(1− α(z))h(z)dz.

The planner’s incentive can be represented with the following inequality

vs(z, ηs)− vw(ηw) ≥ zcηwK.

The left hand side is increasing and strictly concave, starting at −vw(ηw) when z = 0. The

right hand side is linear and increasing. For appropriate values of ηw and c, there are exactly

two solutions for this equation, x1 and x2 with x1 ≤ x2, such player z searches if and only if

z ∈ (x1, x2). �

Proof of Corollary 3. (Only if part). When g is not maximally informative, the equilib-

rium allocation is inefficient in the ex ante sense (Proposition 6) and, a fortiori, is inefficient

in the ad interim sense.

(If part). Suppose g is maximally informative, i.e. g = idR+ , and let (x?, ηs) be the equilib-

rium. Consider a type x of arbitrary age t and suppose there exists a profitable deviation

from the equilibrium plan. We consider a simple deviation that consists in switching type

x’s activity for a dt interval and then reverting back to the equilibrium allocation forever.

Let x be a searcher. Switching x to work for a dt interval generates two effects. First, dpt,

namely the instantaneousness change in type x’s posterior beliefs, has lower variance. On

an individual basis, type x is worse off. Second, her social contribution is affected. In the

dt interval she accumulated information at rate ηwdt rather than xηsdt. Since x searches in

equilibrium, xηsdt > ηwdt. Since g = idR+ , this necessarily implies her social contribution is

diminished. The deviation considered reduces both ηs and type x’s present discounted value

and therefore cannot improve social welfare. �

Proof of Corollary 4. When g = max{G,≥}, Corollary 3 shows that x1 = x2 = x? and

there is nothing to prove. Let g < max{G,≥}. There are three distinct cases to consider:
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Case 1. Suppose there exists no such x1 > 0. This implies that the social planner finds

optimal to allocate x = 0 to search at some particular pt. However, both type x and

the society lose from this deviation. As a searcher, type x’s contribution to the society

is null and so is her personal gain. As a worker, these are both strictly positive. A

contradiction. Therefore there must exists x1 > 0. By monotonicity, all types below

x1 will be allocated in a similar way.

Case 2. Next, suppose x2 <∞. For any type x > x2, the cost of reverting back to work

is higher. In terms of social contribution, the most extreme case is when g = 0. In

such case, x contributes exactly as x2. Yet, the individual gains for x dominate those

of x2, while the implied social loss is the same. Therefore, x is allocated to search

independently of time.

Case 3. Now consider a type x1 < x < x2. By Case 1 and 2, this type individually gains

from search, at all pt, but she contributes negatively to society due to the interaction

between her type and the communication technology g. When pt converges to 0 or

1, her individual gain for engaging in search relative to work goes to zero, whereas

her social contribution does not. Therefore, the planner would want this type to pt to

work. Vice versa, when pt goes to 1
2
, her individual gain are maximized, the planner

would want this type to search. �

Proof of Proposition 7. Fix a target type x̄ a bias b and a basin of δ. The altered η̃s can

be computed in ways similar to Lemma A4. We have that

η̃s = cηwH(x?) + η̃s

∫
x?
g̃(z)h(z)dz + b

∫ x̄+εδ

x̄−εδ
α(z)h(z)dz =

cηwH(x?) + b
∫ x̄+εδ
x̄−εδ

α(z)h(z)dz

1−
∫
x?
g̃(z)h(z)dz

where α(x) = g̃(x) if x ≥ x? and α(x) = c otherwise. The influence exerted by the

δ-neighbor of x̄ is then

I(x̄, δ) =

∫
x?
z(η̃s − ηs)f(z)dz

= Ef (x)(1−H(x?))
b
∫ x̄+εδ
x̄−εδ

α(z)h(z)dz

1−
∫
x?
g̃(z)h(z)dz

= Ef (x) (1−H(x?))ηs
cH(x?)ηw

b
∫ x̄+εδ
x̄−εδ

α(z)h(z)dz.
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where we used that h(z) = zf(z)/Ef (x). Finally, setting b = 1,

ι(x) := lim
δ→0

I(x,δ)
δ

= Ef (x) (1−H(x?))ηs
cH(x?)ηw

lim
δ→0

1
δ

∫ x̄+εδ
x̄−εδ

α(z)h(z)dz

=
Ef (x)

Ef (x)
(1−H(x?))ηs
cH(x?)ηw

lim
δ→0

1
δ

∫ x̄+εδ
x̄−εδ

zα(z)f(z)dz

= ηs
cηw

1−H(x?)
H(x?)

xα(x)

= xα(x)ηs
cηw

1−H(x?)
H(x?)

,

since F ([x̄− εδ, x̄+ εδ]) = δ. �

Proof of Corollary 5. Take any two societies f, f ′ ∈ F with f ′D f . If ηs(f
′) < ηs(f) there

is nothing to prove. Suppose ηs(f
′) > ηs(f). In such case, we have that x? declined. Since

f ′ D f implies h′ D h, we must have H(x?) has also decreased under this transformation.

From Proposition 7 we know that the influence of all searchers has strictly increased. The

manipulative strategy can therefore produce higher distortions for any fixed δ, or the same

amount of distortion for a strictly smaller δ. �

B. Finite Capacity Communication Technologies

In this Appendix, we extend our model to a communication technology g that equally applies

to both workers and searchers.

Definition B1. A communication technology with finite capacity is a concave and non-

decreasing self-map g on R+ with g(y) ≤ y. Let G denote the set of such functions.

Relative to the model presented in the paper, the coefficient c, which was defined as c :=

Eτ (
√

(t)) in Section 3, becomes a g̃(1) := Eτ (
√

(t)), an object that directly depends on

the communication channel. Following Lemma A4, it is straightforward to show that Bayes

consistency implies

ηs = ηw
g̃(1)H(x)

1−
∫
x
g̃(z)h(z)dz

≥ 0. (B.1)

The fixed-point map of 6, becomes

x =
1

g̃(1)
+

∫
x

m(z)h(z)dz, (B.2)

where we denoted m(z) := 1
g̃(1)

(
g̃(1)x− g̃(z)

)
. The following result establishes existence and

uniqueness of our stationary equilibrium when g is a finite capacity channel.
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Assumption B2. Let δ be high enough so that Eh,τ (x
√
t | x ≥ 1) ≤ 1.

Lemma B9. Fix a society f ∈ F and a communication technology with finite capacity g ∈ G.

A stationary equilibrium exists and is unique.

Proof. (Existence) Notice that Equation B.2 can be rewritten as

xg̃(1)H(x) +

∫
x

g̃(z)h(z)dz = 1.

First we show that the left hand side crosses 1 at least once. Notice that at x = 0,∫
0
g̃(z)h(z)dz ≤ 1, by Assumption 1. When x → ∞ the right hand side grows unbound-

edly. Since the right hand side is continuous in x, this proves that there exists at least one

stationary equilibrium in this game. Next we show that x ≥ 1.

(Uniqueness). To show that the left hand side crosses 1 exactly once, we start by computing

the derivative of Equation B.1:

dηs
dx

= K
(

1−
∫
x

g̃(z)h(z)dz − g̃(x)H(x)
)
,

where K > 0. It is enough to show that 1 −
∫
x
g̃(z)h(z)dz ≥ g̃(x)H(x) at any equilibrium

point to ensure uniqueness.

To begin, suppose the equilibrium point is x ≥ 1. Notice that, at the equilibrium, it must

be that

1−
∫
x

g̃(z)h(z)dz = g̃(1)H(x).

Therefore, 1−
∫
x
g̃(z)h(z)dz ≥ g̃(x)H(x) at the equilibrium if g̃(x) ≤ xg̃(1). This is true if

g(x
√
t) ≤ xg(

√
t), which is guaranteed by concavity of g (Definition B1), together with the

fact that x ≥ 1.31

To complete the proof, we analyze the x < 1 and conclude that there cannot be an equilib-

rium of this kind. Notice that at x = 1, 1−
∫

1
g̃(z)h(z)dz > g̃(1)H(1). Indeed,

1−
∫

1
g̃(z)h(z)dz −H(1)g̃(1) > 1− (1−H(1))E(

√
xt|x > 1)−H(1)E(

√
t)

> 1− (1−H(1))E(
√
xt|x > 1)−H(1)E(

√
xt|x > 1)

> 1− E(
√
xt|x > 1)

≥ 0

where the last inequality follows from Assumption B2. Since the derivative is single-crossing,

1−
∫
x
g̃(z)h(z)dz > g̃(x)H(x) for any x < 1. Moreover, concavity of g in the interval x ∈ [0, 1]

31To see this, fix x ≥ 1 and t arbitrarily. Let α := 1
x < 1 and notice that by concavity of g,

g(αx
√
t+ (1− α)0) ≥ αg(x

√
t) + (1− α)g(0),

and, since g(0) = 0, g(αx
√
t) ≥ αg(x

√
t). Rearranging gives us g(x

√
t) ≤ xg(

√
t).
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implies xg(1) < g(x). Therefore, 1−
∫
x
g̃(z)h(z)dz > xg̃(1)H(x) and therefore x < 1 cannot

be an equilibrium. �

After ensuring the existence and uniqueness of the stationary equilibrium, Theorem 1 follows

immediately since the fixed-point problem of Equation B.2 has the same property than the

one of Equation 6, in particular, function m is decreasing in z. Similarly, the proofs of

Proposition 2, 3 and 5 can be readily applied to the new problem of Equation B.2 to reach

the same conclusions.

C. Non-Stationary Equilibria and Convergence

In this section, we discuss the non-stationary version of our model. For concreteness, we

will assume there is a unit mass of players alive a time t = 0 and that δ = 0. Players are

infinitely lived is and there is no inflow of newborn player in the society. Moreover, we restrict

attention to a simpler class of communication technologies, linear functions g(y) = κg(y),

0 ≤ κ ≤ 1. Let ηs : R+ → R be a time-dependent precision for social information. We

refer to ηs(t) as a social information path. It describes the precision of the instantaneous

signal coming from search. Due to the continuum of players, we can think of ηs as being

deterministic. We will denote Es(t) :=
∫ t

0
ηs(t

′)dt′ and, therefore, E ′s(t) = ηs(t). At time t,

every players has two channel from which she can receive information, work and search:

πw ∼ N
(
ηwθdt, dt

)
πs(x) ∼ N

(
xE ′s(t)θdt, dt

)
Players allocate their time optimally. Since they are of measure zero, they cannot affect

the path of ηs. Their problem is in fact very similar to the of Section 3.2. A player at time

t faces a decision problem that consists in choosing the signal, between πw and π(x), that

maximizes the variance of her posterior beliefs. As in Lemma 1, her problem is solved by

the following stopping function:

Lemma C10. Fix a strictly increasing social information path E ′s(t). There exists a stopping

rule ζ : X → R+, such that, for all x ∈ X, player x searches at time t if and only if t ≥ ζ(x).

Moreover, ζ(x) is strictly decreasing in x.

Proof. Fix a path Es(t). From Lemma 1, we know that at time t the indifferent type at

is pinned down by Equation ηw = x?(t)E ′s(t). Define ζ(x) the inverse function of x?(t) =

ηw/E
′
s(t). Since E ′s(t) is strictly increasing, ζ is well-defined. �

When E ′s(t) is increasing, ζ is decreasing. This means that players unravel away from work,

starting from highly connected types down to less connected types. In such case, players

necessarily switch from work to search. The stock of information that each players collect is

Γ(x, t) :=

{
ηwtθ +B(t) if t < ζ(x),(
ηwζ(x) + x

(
E(t)− E(ζ(x))

)
θ +B(t) else.

(C.1)
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We normalize to 1 the variance of the signal that type (x, t) relay onto others. Its conditional

expectation becomes, E
(
π(x, t)|θ

)
= ηw

√
tθ if if t < ζ(x), and E

(
π(x, t)|θ

)
= ηw

ζ(x)√
t
θ +

κx√
t

(
E(t)− E(ζ(x)

)
θ otherwise.

Definition C2. A Dynamic Equilibrium is a stopping rule ζ : X → R+ and social infor-

mation path Es : R+ → R+ such that

1. Given the social information path Es, the stopping rule is adapted to Es as by Lemma

C10. That is, for all types x and times t, player x searches at t if and only if t ≥ ζ(x).

2. Given the stopping rule ζ, Es us Bayes consistent, that is

E ′s(t) =

∫
X

E(π(z, t)|Es)h(z)dz ∀t ≥ 0.

In the equilibrium definition, we impose the obvious consistency requirement, which replace

its stationary counterpart of Equation 4. By replacing the values for E(π(z, t)|Es) in the

Bayes consistency requirement and rearranging, we get

√
tE ′s(t) = ηwtH(x?(t)) +

∫
x?(t)

(
ηwζ(z) + κx

(
Es(t)− Es(ζ(z)

))
h(z)dz. (C.2)

This condition can be expressed as a second-order non-linear ODE, as we show in the next

result.

Lemma C11. A pair (ζ, Es) is a Dynamic Equilibrium if and only if Es is a solution to the

ODE

tE ′′s (t) = ηw
√
tH
( ηw
E ′s(t)

)
+ E ′s(t)

(√
t

∫
ηw
E′s(t)

zh(z)dz − 1

2

)
and ζ is adapted to Es.

Proof. We begin by deriving Equation C.2. Since by definition of ζ we have ζ(x?(t)) = t,

the derivative simplifies a lot. In particular, notice that

d
dt

√
tE ′s(t) = ηwH(x?(t)) + x?t (t)h(x?(t))

(
ηwt− ηwζ(x?(t)) + κx?(t)

(
Es(t)− Es(ζ(x?(t)))

))
+κ
∫
x?(t)

zE ′s(t)h(z)dz

= ηwH(x?(t)) + x?t (t)h(x?(t))
(
ηwt− ηwt+ κx?(t)

(
Es(t)− Es(t))

))
+ κ

∫
x?(t)

zE ′s(t)h(z)dz

= ηwH(x?(t)) + κ
∫
x?(t)

zE ′s(t)h(z)dz.

Therefore,
1

2
√
t
E ′s(t) +

√
tE ′′s (t) = ηwH(x?(t)) + κE ′s(t)

∫
x?(t)

zh(z)dz
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and rearranging, with x?(t) = ηw/E
′
s(t),

tE ′′s (t) = ηw
√
tH
( ηw
E ′s(t)

)
+ E ′s(t)

(
κ
√
t

∫
ηw
E′s(t)

zh(z)dz − 1

2

)
which concludes the proof. �

C.1. Convergence Towards the Stationarity Equilibrium

The dynamic model introduced in the previous section differs from the on introduced in

Section 3 because players are infinitely lived. In this section, we perform the same exercise

of the previous one, but in a dynamic model in which players at different ages can coexist.

Although equilibria cannot be readily expressed as we did in Lemma C11, we can conclude

they has nice features. In particular we show that when g(x) = x, ηs(t) is necessarily a

strictly increasing path that converges to the stationary equilibrium of Section 4. To avoid

confusion, we will refer to time with variable t and to age with variable m. Notice that

m ≤ t. As a consequence of Lemma C10, we still have that the activity choice for a player

of type x only depends on t, not m. In particular, such choice is determined by τ(x) the

stopping rule adapted to Es. The stock of information is given by

Γ(x,m, t) :=


ηwmθ +B(m) if t < τ(x),(
ηw(τ(x)−m) + x

(
E(t)− E(τ(x))

)
θ +B(m) if m > t− τ(x).(

x
(
E(t)− E(m)

)
θ +B(m) if m < t− τ(x).

Similarly, we can define the normalized E
(
π(z,m, t)

∣∣Es), as we did in the previous section.

The consistency conditions now takes into account the fact that a type can be a multiple

different ages at the same time. In particular, at time t, the probability that type x is

of age m ≤ t is given by the truncated exponential distribution τ(m|t). Therefore, Bayes

consistency becomes:

E ′s(t) =

∫
X

(∫ t

0

E
(
π(z,m, t)

∣∣Es)τ(m|t)dm
)
h(z)dz ∀t ≥ 0. (C.3)

The equilibrium is then defined as follows:

Definition C3. A Dynamic Equilibrium with overlapping generations is composed by a

stopping rule ζ : X → R+ and a social information path Es : R+ → R+ such that

1. Given the social information path Es, the stopping rule is adapted to Es as by Lemma

C10. That is, for all types x and times t, player x searches at t if and only if t ≥ ζ(x).

2. Given the stopping rule ζ, Es is a solution to Equation C.3.

In the next result we argue that, when an equilibrium exists, its information path ηs(t) it has

two important property. continuous solution will satisfy the property of being monotonically

increasing and converging to the stationary equilibrium analyzed in Section 4. For that, we

prove first two other results about ηs(t).
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Lemma C12. Let (x?, η?s) be the unique stationary equilibrium. Suppose (τ, Es) is a dynamic

equilibrium with overlapping generations and that g(y) = y. Then ηs(t) is strictly increasing.

Proof. Suppose not. Let t̄ be the first time at which η′(t) ≤ 0. Fix a type z and an age m. We

want to show E(π(z,m, t̄+ dt)|ηs) ≥ E(π(z,m, t̄)|ηs). This compares the social contribution

of two identical players that where born dt-apart from each others. If t̄ < ζ(z), then both

players have worked all their lives, which are of length m. Therefore they accumulated the

same amount of information in expectation, or E(π(z,m, t̄ + dt)|ηs) = E(π(z,m, t̄)|ηs). If,

instead, t̄ ≥ ζ(z), the younger player, the one who is of age m at time t̄ + dt, has collected

more information in expectation, E(π(z,m, t̄ + dt)|ηs) > E(π(z,m, t̄)|ηs). This is because,

by assumption on t̄, in the interval [0, t̄) the information path ηs(t) was strictly increasing.

Therefore, keeping τ(m|t̄) constant, the integral in Equation C.3 is strictly increasing. The

change in the distribution only reinforce this effect. In fact, the distribution of ages τ(m|t̄)
is first-order stochastically dominated by τ(m|t̄ + dt). Since E(π(z,m, t̄)|ηs) is trivially

increasing in m (older players have more information in expectation), we conclude that

ηs(t̄) < ηs(t̄+ dt) and therefore η′s(t̄) > 0. A contradiction. �

Lemma C13. Let (x?, η?s) be the unique stationary. Suppose (τ, Es) is a non-stationary

equilibrium with overlapping generations and that g(y) = y. Then ηs(t) is bounded above by

η∗s

Proof. Suppose not. Then, by continuity of ηs(t), there must be a t̄ such that ηs(t̄) = η?s . By

Claim C12, we know that ηs(t) < η? for all t ∈ [0, t̄). As before, fix any type x and any age

m. Under the dynamic equilibrium, this player cannot have accumulated more information

than the same player of the same age under the stationary equilibrium. If (z,m) works at

t̄, she has been working since t̄−m and has the expected amount of information under the

two regimes. If she ever searched, then by ηs(t) < η?, she must have strictly less information

under the dynamic equilibrium. Therefore, keeping τ(m|t̄) constant, at t̄ the integral in

Equation C.3 is strictly smaller than η?s , or ηs(t̄) < η?s , a contradiction. �

Lemma C14. Let (x?, η?s) be the unique stationary equilibrium. Suppose (τ, Es) is a non-

stationary equilibrium with overlapping generations and that g(y) = y. Then lim ηs(t) = η?.

Proof. We know that ηs(t) is an monotone increasing (Claim C12) and bounded (Claim C13)

sequence. As such, it necessarily converges to some real limit point lim ηs(t) ≤ η?. Suppose

lim ηs(t) < η?. In such case, lim ηs(t), together with the implied threshold x, must satisfies

Definition 2. A contradiction on the uniqueness result of Proposition 1. �
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